kth.sePublikationer
Ändra sökning
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
NOMeS: Near-Optimal Metaheuristic Scheduling for MPSoCs
Abo Akad Univ, Turku, Finland..
Malardalen Univ, Vasteras, Sweden..
Univ Turku, Turku, Finland..
Visa övriga samt affilieringar
2017 (Engelska)Ingår i: 2017 19TH INTERNATIONAL SYMPOSIUM ON COMPUTER ARCHITECTURE AND DIGITAL SYSTEMS (CADS), IEEE , 2017, s. 70-75Konferensbidrag, Publicerat paper (Refereegranskat)
Abstract [en]

The task scheduling problem for Multiprocessor System-on-Chips (MPSoC), which plays a vital role in performance, is an NP-hard problem. Exploring the whole search space in order to find the optimal solution is not time efficient, thus metaheuristics are mostly used to find a near-optimal solution in a reasonable amount of time. We propose a novel metaheuristic method for near-optimal scheduling that can provide performance guarantees for multiple applications implemented on a shared platform. Applications are represented as directed acyclic task graphs (DAG) and are executed on an MPSoC platform with given communication costs. We introduce a novel multi-population method inspired by both genetic and imperialist competitive algorithms. It is specialized for the scheduling problem with the goal to improve the convergence policy and selection pressure. The potential of the approach is demonstrated by experiments using a Sobel filter, a SUSAN filter, RASTA-PLP and JPEG encoder as real-world case studies.

Ort, förlag, år, upplaga, sidor
IEEE , 2017. s. 70-75
Serie
CSI International Symposium on Computer Architecture and Digital Systems, ISSN 2325-9361
Nyckelord [en]
parallel imperialist competitive algorithm (PICA), multi-population technique, evolutionary computing (EC), task graph scheduling, multi-objective optimization
Nationell ämneskategori
Datorteknik
Identifikatorer
URN: urn:nbn:se:kth:diva-228176DOI: 10.1109/CADS.2017.8310723ISI: 000428738600013Scopus ID: 2-s2.0-85050657977ISBN: 978-1-5386-4379-2 (tryckt)OAI: oai:DiVA.org:kth-228176DiVA, id: diva2:1209271
Konferens
19th International Symposium on Computer Architecture and Digital Systems (CADS), DEC 21-22, 2017, Iran Univ Sci & Technol, IRAN
Anmärkning

QC 20180522

Tillgänglig från: 2018-05-22 Skapad: 2018-05-22 Senast uppdaterad: 2022-06-26Bibliografiskt granskad

Open Access i DiVA

Fulltext saknas i DiVA

Övriga länkar

Förlagets fulltextScopus

Person

Moghaddami Khalilzad, Nima

Sök vidare i DiVA

Av författaren/redaktören
Moghaddami Khalilzad, Nima
Av organisationen
KTH
Datorteknik

Sök vidare utanför DiVA

GoogleGoogle Scholar

doi
isbn
urn-nbn

Altmetricpoäng

doi
isbn
urn-nbn
Totalt: 43 träffar
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf