kth.sePublikationer KTH
Ändra sökning
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Model and Reality: Connecting BIM and the Built Environment
KTH, Skolan för arkitektur och samhällsbyggnad (ABE), Fastigheter och byggande, Geodesi och satellitpositionering.ORCID-id: 0000-0001-9032-4305
2021 (Engelska)Doktorsavhandling, sammanläggning (Övrigt vetenskapligt)
Abstract [en]

The adoption of building information modeling (BIM) in the architecture, engineering, and construction (AEC) industry is changing the way informa-tion regarding the built environment is created, stored, and exchanged. In short, documents are replaced with databases, processes are automated, and timelines become more circular with an emphasis on managing the life cycles of all manufactured objects. This has both direct and indirect consequences for the fields of geodesy and geographic information. Although geodesy and surveying have played a vital role in the construction process for a long time, new data standards and higher degrees of prefabrication and automation in the actual construction means that the topic of georeferencing must be revisited. In addition, using object oriented data structures means that semantic information must be inferred from geodata such as point clouds and images in order to adequately document existing assets. This thesis addresses the handling of 3D spatial information by analyzing different georeferencing methods and metadata used to describe the quality and characteristics of geodata.The outcomes include a recommendation for how the open BIM standard Industry Foundation Classes (IFC) could be extended to support more robust georeferencing, a suggestion that all standards and exchange formats used forthe built environment should include metadata for tolerance and uncertainty, and a framework that can describe characteristics of 3D spatial data that are not covered by conventional geographic metadata. On the semantic side, this thesis proposes an image-based method for identifying roadside objects in mobile laser scanning (MLS) point clouds, and it also explores the possibilities to train neural networks for point cloud segmentation by creating training data from 3D mesh models used in infrastructure design. Overall, the thesis describes the connection between model and reality, the importance of geodesy and geodetic surveying in this context, and makes contributions to both the geometric and semantic aspects of modeling the built environment.

Abstract [sv]

Införandet av building information modeling (BIM) påverkar informationshanteringen för alla skeden inom den byggda miljöns livscykel; från projektering och konstruktion till underhåll och slutligen avveckling. I korthet är syftet med BIM att ersätta dokumentbaserad kommunikation med modeller, databaser och automatiserade processer. Detta har både direkta och indirekta konsekvenser för områdena geodesi och geoinformatik. Geodesi har länge haft en viktig roll inom byggprocessen, och detta är inget som ändras av BIM-införandet. Nya standarder och mer automatiserade arbetssätt ger dock frågor kring georeferering och geodetiska metadata förnyad relevans. Utöver det så kräver ett objektorienterat arbetssätt att semantik kan utläsas ur insamlade geodata för att möjliggöra modellering av existerande byggnadsverk och anläggningar. I den här avhandlingen analyseras olika georefereringsmetoder samt de metadata som vanligtvis används för att beskriva geodatakvalitet. Resultaten visar att den öppna BIM-standarden Industry Foundation Classes (IFC) kan utökas för att möjliggöra mer robust georeferering. Flertalet standarder som hanterar spatiala data för den byggda miljön saknar också möjlighet att uttrycka kvalitetsmåtten tolerans och osäkerhet. Avhandlingen presenterar även ett ramverk som kan beskriva geometriska egenskaper hos 3D spatiala data som inte täcks av traditionella metadata. På den semantiska sidan presenterar avhandlingen en bildbaserad metod för objektigenkänningi punktmoln framställda genom mobil laserskanning (MLS). Den utforskar även möjligheterna att träna neurala nätverk för punktmolnssegmentering genom att skapa träningsdata från 3D-modeller som används vid projektering. Sammanfattningsvis beskriver avhandlingen hur geodesi och mätningsteknik utgör kopplingen mellan modell och verklighet. Denna koppling innehållerbåde geometri och semantik, och avhandlingen bidrar till den tekniska utvecklingen inom bägge områden.

Ort, förlag, år, upplaga, sidor
Stockholm: KTH Royal Institute of Technology, 2021. , s. 64
Serie
TRITA-ABE-DLT ; 2124
Nationell ämneskategori
Annan samhällsbyggnadsteknik
Forskningsämne
Geodesi och geoinformatik, Geodesi
Identifikatorer
URN: urn:nbn:se:kth:diva-294087ISBN: 978-91-7873-892-2 (tryckt)OAI: oai:DiVA.org:kth-294087DiVA, id: diva2:1553085
Disputation
2021-06-04, Videolänk https://kth-se.zoom.us/j/68096006113, Du som saknar dator /datorvana kontakta Milan Horemuz milan.horemuz@abe.kth.se / Use the e-mail address if you need technical assistance, Stockholm, 09:00 (Engelska)
Opponent
Handledare
Forskningsfinansiär
Trafikverket, FUD 6240
Anmärkning

QC 20210511

Tillgänglig från: 2021-05-11 Skapad: 2021-05-07 Senast uppdaterad: 2022-06-25Bibliografiskt granskad
Delarbeten
1. Geographic capabilities and limitations of Industry Foundation Classes
Öppna denna publikation i ny flik eller fönster >>Geographic capabilities and limitations of Industry Foundation Classes
2018 (Engelska)Ingår i: Automation in Construction, ISSN 0926-5805, E-ISSN 1872-7891, Vol. 96, s. 554-566Artikel i tidskrift (Refereegranskat) Published
Abstract [en]

Infrastructure design is conducted in a 3D Cartesian coordinate system with the assumption that the Earth is flat and that the scale is constant over the entire project area. Map projections are commonly used to georeference the designed geometries before constructing them on the surface of the Earth. The scale in a map projection varies depending on the position in the map plane, which leads to scale distortions between the designed geometries and the geometries staked out for construction. These distortions are exaggerated for large longitudinal projects such as the construction of roads and railroads because the construction site spans a larger area. Building Information Modeling (BIM) is increasing in popularity as a way to manage information within a construction project. Its use is more widespread in the building industry, but it is currently being adopted by the infrastructure industry as well. The open BIM standard IFC (Industry Foundation Classes) has recently developed support for alignment geometries, and full support for disciplines such as road and railroad construction is underway. This study tests whether the current IFC standard can facilitate georeferencing with sufficiently low distortion for the construction of infrastructure. This is done by performing georeferencing using three different methods, all using the information provided in the IFC schema, and by calculating the scale distortions caused by the different methods. It is concluded that the geographic capabilities of the IFC schema could be improved by adding a separate scale factor for the horizontal plane and support for object-specific map projections.

Ort, förlag, år, upplaga, sidor
Elsevier, 2018
Nyckelord
Georeferencing, BIM, IFC
Nationell ämneskategori
Byggproduktion
Identifikatorer
urn:nbn:se:kth:diva-240760 (URN)10.1016/j.autcon.2018.10.014 (DOI)000452345800042 ()2-s2.0-85055585349 (Scopus ID)
Forskningsfinansiär
Trafikverket, FUD 6240 FUD 6240
Anmärkning

QC 20190107

Tillgänglig från: 2019-01-07 Skapad: 2019-01-07 Senast uppdaterad: 2024-03-18Bibliografiskt granskad
2. Conceptualizing georeferencing for terrestrial laser scanning and improving point cloud metadata
Öppna denna publikation i ny flik eller fönster >>Conceptualizing georeferencing for terrestrial laser scanning and improving point cloud metadata
(Engelska)Ingår i: Artikel i tidskrift (Refereegranskat) Accepted
Nationell ämneskategori
Annan samhällsbyggnadsteknik
Identifikatorer
urn:nbn:se:kth:diva-283809 (URN)
Anmärkning

QC 20210126

Tillgänglig från: 2020-10-13 Skapad: 2020-10-13 Senast uppdaterad: 2022-06-25Bibliografiskt granskad
3. Classification and object reconstruction in point clouds using semantic segmentation and transfer learning
Öppna denna publikation i ny flik eller fönster >>Classification and object reconstruction in point clouds using semantic segmentation and transfer learning
2019 (Engelska)Konferensbidrag, Publicerat paper (Refereegranskat)
Nationell ämneskategori
Annan samhällsbyggnadsteknik
Identifikatorer
urn:nbn:se:kth:diva-250331 (URN)
Konferens
CIB World Building Congress 2019
Anmärkning

QC 20190429

Tillgänglig från: 2019-04-29 Skapad: 2019-04-29 Senast uppdaterad: 2024-03-18Bibliografiskt granskad
4. Identifying roadside objects in mobile laser scanning data using image-based point cloud segmentation
Öppna denna publikation i ny flik eller fönster >>Identifying roadside objects in mobile laser scanning data using image-based point cloud segmentation
2020 (Engelska)Ingår i: Journal of Information Technology in Construction, E-ISSN 1874-4753, Vol. 25, s. 545-560Artikel i tidskrift (Refereegranskat) Published
Abstract [en]

Capturing geographic information from a mobile platform, a method known as mobile mapping, is today one of the best methods for rapid and safe data acquisition along roads and railroads. The digitalization of society and the use of information technology in the construction industry is increasing the need for structured geometric and semantic information about the built environment. This puts an emphasis on automatic object identification in data such as point clouds. Most point clouds are accompanied by RGB images, and a recent literature review showed that these are possibly underutilized for object identification. This article presents a method (image-based point cloud segmentations - IBPCS) where semantic segmentation of images is used to filter point clouds, which drastically reduces the number of points that have to be considered in object identification and allows simpler algorithms to be used. An example implementation where IBPCS is used to identify roadside game fences along a country road is provided, and the accuracy and efficiency of the method is compared to the performance of PointNet, which is a neural network designed for end-to-end point cloud classification and segmentation. The results show that our implementation of IBPCS outperforms PointNet for the given task. The strengths of IBPCS are the ability to filter point clouds based on visual appearance and that it efficiently can process large data sets. This makes the method a suitable candidate for object identification along rural roads and railroads, where the objects of interest are scattered over long distances.

Ort, förlag, år, upplaga, sidor
International Council for Research and Innovation in Building and Construction, 2020
Nyckelord
Object identification, Point clouds, Mobile mapping, Laser scanning, Deep learning
Nationell ämneskategori
Datorgrafik och datorseende
Identifikatorer
urn:nbn:se:kth:diva-289529 (URN)10.36680/j.itcon.2020.031 (DOI)000605615000001 ()2-s2.0-85099292194 (Scopus ID)
Anmärkning

QC 20210203

Tillgänglig från: 2021-02-03 Skapad: 2021-02-03 Senast uppdaterad: 2025-02-07Bibliografiskt granskad
5. Towards synthesized point clouds as training data for parsing and interpreting the built environment
Öppna denna publikation i ny flik eller fönster >>Towards synthesized point clouds as training data for parsing and interpreting the built environment
(Engelska)Manuskript (preprint) (Övrigt vetenskapligt)
Abstract [en]

The adoption of building information modeling (BIM) in the architecture, engineering, and construction (AEC) industry is increasing the need for accurate object-oriented models of existing assets in the built environment. Moreover, 3D mesh models of man-made objects used in the design process are becoming more easily available. This paper explores synergies between the design and parsing of the built environment by procedurally generatingsynthetic point clouds from 3D mesh models. The synthetic point clouds were used as training data for PointNet,a neural network for end-to-end point cloud classification and segmentation, and the trained network was validatedusing "real" point clouds created through laser scanning. The conclusions from the work are that there is potential for the tested approach and that there are areas with clear needs for future research. All code and point cloudsamples used to generate training data are publicly available.

Nyckelord
Point clouds, Data augmentation, Data synthesis, BIM, Deep learning
Nationell ämneskategori
Annan teknik
Forskningsämne
Geodesi och geoinformatik
Identifikatorer
urn:nbn:se:kth:diva-294086 (URN)
Forskningsfinansiär
Trafikverket, FUD 6240
Anmärkning

QC 20210527

Tillgänglig från: 2021-05-07 Skapad: 2021-05-07 Senast uppdaterad: 2025-02-10Bibliografiskt granskad

Open Access i DiVA

fulltext(4070 kB)614 nedladdningar
Filinformation
Filnamn FULLTEXT02.pdfFilstorlek 4070 kBChecksumma SHA-512
3a436523c6e8e7c586b6effe427e730490b19439307d1b031ae7b608b8fd38f120c16c8e2aef5cffe552d48478d754cd13a0a2a1c371cbcd840c6f9821f7ff06
Typ fulltextMimetyp application/pdf

Sök vidare i DiVA

Av författaren/redaktören
Uggla, Gustaf
Av organisationen
Geodesi och satellitpositionering
Annan samhällsbyggnadsteknik

Sök vidare utanför DiVA

GoogleGoogle Scholar
Totalt: 616 nedladdningar
Antalet nedladdningar är summan av nedladdningar för alla fulltexter. Det kan inkludera t.ex tidigare versioner som nu inte längre är tillgängliga.

isbn
urn-nbn

Altmetricpoäng

isbn
urn-nbn
Totalt: 1565 träffar
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf