kth.sePublikationer
Ändra sökning
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Maximizing the Diversity of Exposure in a Social Network
Aalto Univ, Dept Comp Sci, Espoo 02150, Finland..
Aarhus Univ, Dept Comp Sci, DK-8000 Aarhus, Denmark..
Univ Eastern Finland, Sch Comp, Kuopio 70210, Finland..
KTH, Skolan för elektroteknik och datavetenskap (EECS), Datavetenskap, Teoretisk datalogi, TCS. Aalto Univ, Dept Comp Sci, Helsinki 02150, Finland..ORCID-id: 0000-0002-5211-112X
2022 (Engelska)Ingår i: IEEE Transactions on Knowledge and Data Engineering, ISSN 1041-4347, E-ISSN 1558-2191, Vol. 34, nr 9, s. 4357-4370Artikel i tidskrift (Refereegranskat) Published
Abstract [en]

Social-media platforms have created new ways for citizens to stay informed and participate in public debates. However, to enable a healthy environment for information sharing, social deliberation, and opinion formation, citizens need to be exposed to sufficiently diverse viewpoints that challenge their assumptions, instead of being trapped inside filter bubbles. In this paper, we take a step in this direction and propose a novel approach to maximize the diversity of exposure in a social network. We formulate the problem in the context of information propagation, as a task of recommending a small number of news articles to selected users. In the proposed setting, we take into account content and user leanings, and the probability of further sharing an article. Our model allows to capture the balance between maximizing the spread of information and ensuring the exposure of users to diverse viewpoints. The resulting problem can be cast as maximizing a monotone and submodular function, subject to a matroid constraint on the allocation of articles to users. It is a challenging generalization of the influence-maximization problem. Yet, we are able to devise scalable approximation algorithms by introducing a novel extension to the notion of random reverse-reachable sets. We experimentally demonstrate the efficiency and scalability of our algorithm on several real-world datasets.

Ort, förlag, år, upplaga, sidor
Institute of Electrical and Electronics Engineers (IEEE) , 2022. Vol. 34, nr 9, s. 4357-4370
Nyckelord [en]
Cultural differences, Social networking (online), Approximation algorithms, Computer science, Task analysis, Resource management, Greedy algorithms, Information propagation, diversity maximization, filter bubbles, social influence
Nationell ämneskategori
Datavetenskap (datalogi) Medie- och kommunikationsvetenskap
Identifikatorer
URN: urn:nbn:se:kth:diva-316442DOI: 10.1109/TKDE.2020.3038711ISI: 000836626800022Scopus ID: 2-s2.0-85097142228OAI: oai:DiVA.org:kth-316442DiVA, id: diva2:1688259
Anmärkning

QC 20220818

Tillgänglig från: 2022-08-18 Skapad: 2022-08-18 Senast uppdaterad: 2025-02-11Bibliografiskt granskad

Open Access i DiVA

Fulltext saknas i DiVA

Övriga länkar

Förlagets fulltextScopus

Person

Gionis, Aristides

Sök vidare i DiVA

Av författaren/redaktören
Gionis, Aristides
Av organisationen
Teoretisk datalogi, TCS
I samma tidskrift
IEEE Transactions on Knowledge and Data Engineering
Datavetenskap (datalogi)Medie- och kommunikationsvetenskap

Sök vidare utanför DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetricpoäng

doi
urn-nbn
Totalt: 53 träffar
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf