kth.sePublikationer
Ändra sökning
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Geometry of spiking patterns in early visual cortex: a topological data analytic approach
KTH, Skolan för teknikvetenskap (SCI), Matematik (Inst.), SFW Matematik för Data och AI. Basque Ctr Appl Math, MCEN Team, BCAM, Bilbao 48009, Basque, Spain..
Inria Univ Cote Azur, MathNeuro Team, F-06902 Sophia Antipolis, France..
Feil Family Brain & Mind Res Inst, Weill Cornell Med Coll, New York, NY 10065 USA..ORCID-id: 0000-0002-9293-0111
Feil Family Brain & Mind Res Inst, Weill Cornell Med Coll, New York, NY 10065 USA..
Visa övriga samt affilieringar
2022 (Engelska)Ingår i: Journal of the Royal Society Interface, ISSN 1742-5689, E-ISSN 1742-5662, Vol. 19, nr 196, artikel-id 20220677Artikel i tidskrift (Refereegranskat) Published
Abstract [en]

In the brain, spiking patterns live in a high-dimensional space of neurons and time. Thus, determining the intrinsic structure of this space presents a theoretical and experimental challenge. To address this challenge, we introduce a new framework for applying topological data analysis (TDA) to spike train data and use it to determine the geometry of spiking patterns in the visual cortex. Key to our approach is a parametrized family of distances based on the timing of spikes that quantifies the dissimilarity between neuronal responses. We applied TDA to visually driven single-unit and multiple single-unit spiking activity in macaque V1 and V2. TDA across timescales reveals a common geometry for spiking patterns in V1 and V2 which, among simple models, is most similar to that of a low-dimensional space endowed with Euclidean or hyperbolic geometry with modest curvature. Remarkably, the inferred geometry depends on timescale and is clearest for the timescales that are important for encoding contrast, orientation and spatial correlations.

Ort, förlag, år, upplaga, sidor
The Royal Society , 2022. Vol. 19, nr 196, artikel-id 20220677
Nyckelord [en]
topological data analysis, persistent homology, spike metric, visual cortex
Nationell ämneskategori
Neurovetenskaper
Identifikatorer
URN: urn:nbn:se:kth:diva-322206DOI: 10.1098/rsif.2022.0677ISI: 000885628900001PubMedID: 36382589Scopus ID: 2-s2.0-85141995006OAI: oai:DiVA.org:kth-322206DiVA, id: diva2:1716510
Anmärkning

QC 20221206

Tillgänglig från: 2022-12-06 Skapad: 2022-12-06 Senast uppdaterad: 2022-12-06Bibliografiskt granskad

Open Access i DiVA

Fulltext saknas i DiVA

Övriga länkar

Förlagets fulltextPubMedScopus

Person

Guidolin, Andrea

Sök vidare i DiVA

Av författaren/redaktören
Guidolin, AndreaVictor, Jonathan D. D.
Av organisationen
SFW Matematik för Data och AI
I samma tidskrift
Journal of the Royal Society Interface
Neurovetenskaper

Sök vidare utanför DiVA

GoogleGoogle Scholar

doi
pubmed
urn-nbn

Altmetricpoäng

doi
pubmed
urn-nbn
Totalt: 78 träffar
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf