kth.sePublikationer KTH
Ändra sökning
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Dynamic Scene Graph for Mutual-Cognition Generation in Proactive Human-Robot Collaboration
Visa övriga samt affilieringar
2022 (Engelska)Ingår i: Procedia CIRP, Elsevier B.V. , 2022, s. 943-948Konferensbidrag, Publicerat paper (Refereegranskat)
Abstract [en]

Human-robot collaboration (HRC) plays a crucial role in agile, flexible, and human-centric manufacturing towards the mass personalization transition. Nevertheless, in today's HRC tasks, either humans or robots need to follow the partners' commands and instructions along collaborative activities progressing, instead of proactive, mutual engagement. The non-semantic perception of HRC scenarios impedes mutually needed, proactive planning and high-cognitive capabilities in existing HRC systems. To overcome the bottleneck, this research explores a dynamic scene graph-based method for mutual-cognition generation in Proactive HRC applications. Firstly, a spatial-attention object detector is utilized to dynamically perceive objects in industrial settings. Secondly, a linking prediction module is leveraged to construct HRC scene graphs. An attentional graph convolutional network (GCN) is utilized to capture relations between industrial parts, human operators, and robot operations and reason structural connections of human-robot collaborative processing as graph embedding, which links to mutual planners for human operation supports and robot proactive instructions. Lastly, the Proactive HRC implementation is demonstrated on disassembly tasks of aging electronic vehicle batteries (EVBs) and evaluate its mutual-cognition capabilities. 

Ort, förlag, år, upplaga, sidor
Elsevier B.V. , 2022. s. 943-948
Nyckelord [en]
Cognitive computing, human-centric manufacturing, human-robot collaboration, scene graph, Cognitive systems, Graphic methods, Object detection, Robots, Semantics, Collaboration task, Collaborative activities, Dynamic scenes, Human robots, Human-centric, Personalizations, Scene-graphs, Manufacture
Nationell ämneskategori
Produktionsteknik, arbetsvetenskap och ergonomi
Identifikatorer
URN: urn:nbn:se:kth:diva-325073DOI: 10.1016/j.procir.2022.05.089Scopus ID: 2-s2.0-85132249012OAI: oai:DiVA.org:kth-325073DiVA, id: diva2:1746331
Konferens
55th CIRP Conference on Manufacturing Systems, CIRP CMS 2022, 29 June 2022 through 1 July 2022
Anmärkning

QC 20230328

Tillgänglig från: 2023-03-28 Skapad: 2023-03-28 Senast uppdaterad: 2023-03-28Bibliografiskt granskad

Open Access i DiVA

Fulltext saknas i DiVA

Övriga länkar

Förlagets fulltextScopus

Person

Wang, Lihui

Sök vidare i DiVA

Av författaren/redaktören
Wang, Lihui
Av organisationen
Produktionsutveckling
Produktionsteknik, arbetsvetenskap och ergonomi

Sök vidare utanför DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetricpoäng

doi
urn-nbn
Totalt: 16 träffar
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf