kth.sePublikationer
Ändra sökning
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
A deep-learning representation of multi-group cross sections in lattice calculations
KTH, Skolan för teknikvetenskap (SCI), Fysik, Kärnenergiteknik.
KTH, Skolan för teknikvetenskap (SCI), Fysik, Kärnenergiteknik.ORCID-id: 0000-0002-7943-7517
2024 (Engelska)Ingår i: Annals of Nuclear Energy, ISSN 0306-4549, E-ISSN 1873-2100, Vol. 195, artikel-id 110123Artikel i tidskrift (Refereegranskat) Published
Abstract [en]

To compute few-group nodal cross sections, lattice codes must first generate multi-group cross sections using continuous energy cross-section libraries for each material in each fuel cell. Since the processing cost is significant, we propose representing the multi-group cross sections during lattice calculations using a pre-trained deep-learning-based model. The model utilizes a combination of Principal Component Analysis (PCA) and fully connected Neural Networks (NN). The model is specifically designed to manage extensive multi-group cross-section data sets, which contain data for several dozen nuclides and encompass more than 50 energy groups. Our testing of the trained model on a PWR assembly with a realistic boron letdown curve revealed an average relative error of around 0.1% for both fission and total macroscopic cross sections. The average time required for the model to generate the cross sections was approximately 0.01% of the time needed to execute the cross-section processing module.

Ort, förlag, år, upplaga, sidor
Elsevier BV , 2024. Vol. 195, artikel-id 110123
Nyckelord [en]
Cross section representation, Deep learning, Lattice codes, Neural network, Principal component analysis
Nationell ämneskategori
Energiteknik
Identifikatorer
URN: urn:nbn:se:kth:diva-338077DOI: 10.1016/j.anucene.2023.110123ISI: 001086078700001Scopus ID: 2-s2.0-85172674338OAI: oai:DiVA.org:kth-338077DiVA, id: diva2:1804673
Anmärkning

QC 20231013

Tillgänglig från: 2023-10-13 Skapad: 2023-10-13 Senast uppdaterad: 2025-09-25Bibliografiskt granskad
Ingår i avhandling
1. Machine learning methods in reactor lattice and nodal calculations
Öppna denna publikation i ny flik eller fönster >>Machine learning methods in reactor lattice and nodal calculations
2025 (Engelska)Doktorsavhandling, sammanläggning (Övrigt vetenskapligt)
Abstract [en]

 This thesis investigates the application of advanced machine learning (ML) techniques for reactor physics applications, specifically in the area of lattice and nodal calculations. The research is divided into two main areas. The first focuses on accelerating the generation of few-group cross section (FGXS) data and the second area focuses on the use of ML for accurate predictions of nodal parameters and their uncertainty estimates.   In the first area, ML-based surrogate models were developed to predict multi-group cross section (MGXS) libraries for nuclides commonly found in pressurized water reactors (PWRs), serving as efficient alternatives to conventional tools such as XSPROC. Additionally, a hybrid model incorporating two deep neural networks (DNNs) with a linear blending scheme was proposed to simulate the depletion-driven evolution of nuclide compositions within fuel pellets. To manage the high dimensionality of MGXS data, Principal Component Analysis (PCA) was employed to construct a reduced latent space, which was then mapped using DNNs conditioned on reactor state parameters. Recurrent neural networks (RNNs) were also evaluated for modeling fuel depletion behavior. Two RNN variants—the “Direct NN” and the “Difference NN”—were developed and compared, and a nuclide-specific blending parameter optimized during training was introduced to enhance predictive performance without requiring additional training data.  The second area examines ML-based approaches for nodal data representation. Statistically rigorous model comparisons were performed using the non-parametric Wilcoxon, Nemenyi, McDonald-Thompson (WNMT) test. The study demonstrated that ML models can predict not only mean FGXS parameters but also their associated covariance matrices, capturing aleatoric uncertainty and enabling their integration into full-core uncertainty quantification frameworks. Both polynomial regression and DNN-based models were assessed, alongside the effects of descriptive statistical preprocessing. Results showed a strong dependence of model accuracy on training dataset size, with polynomial regression combined with descriptive statistics yielding the most accurate predictions on the largest dataset.

Ort, förlag, år, upplaga, sidor
Stockholm: KTH Royal Institute of Technology, 2025. s. ix, 68
Serie
TRITA-SCI-FOU ; 2025:38
Nationell ämneskategori
Annan teknik
Forskningsämne
Fysik, Kärnenergiteknik
Identifikatorer
urn:nbn:se:kth:diva-370472 (URN)978-91-8106-377-6 (ISBN)
Disputation
2025-09-26, FB51, Roslagstullsbacken 21, AlbaNova, Stockholm, 14:00 (Engelska)
Handledare
Anmärkning

QC 2025-09-25

Tillgänglig från: 2025-09-25 Skapad: 2025-09-25 Senast uppdaterad: 2025-10-27Bibliografiskt granskad

Open Access i DiVA

Fulltext saknas i DiVA

Övriga länkar

Förlagets fulltextScopus

Person

Chan, Yi MengDufek, Jan

Sök vidare i DiVA

Av författaren/redaktören
Chan, Yi MengDufek, Jan
Av organisationen
Kärnenergiteknik
I samma tidskrift
Annals of Nuclear Energy
Energiteknik

Sök vidare utanför DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetricpoäng

doi
urn-nbn
Totalt: 266 träffar
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf