kth.sePublikationer
Ändra sökning
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Context-Aware Change Detection With Semi-Supervised Learning
KTH, Skolan för arkitektur och samhällsbyggnad (ABE), Samhällsplanering och miljö, Geoinformatik.ORCID-id: 0000-0003-3599-3164
KTH, Skolan för arkitektur och samhällsbyggnad (ABE), Samhällsplanering och miljö, Geoinformatik.ORCID-id: 0000-0001-9692-8636
KTH, Skolan för arkitektur och samhällsbyggnad (ABE), Samhällsplanering och miljö, Geoinformatik.ORCID-id: 0000-0003-1369-3216
2023 (Engelska)Ingår i: Proceedings IGARSS 2023 - 2023 IEEE International Geoscience and Remote Sensing Symposium, Institute of Electrical and Electronics Engineers (IEEE) , 2023Konferensbidrag, Publicerat paper (Refereegranskat)
Abstract [en]

Change detection using earth observation data plays a vital role in quantifying the impact of disasters in affected areas. While data sources like Sentinel-2 provide rich optical information, they are often hindered by cloud cover, limiting their usage in disaster scenarios. However, leveraging pre-disaster optical data can offer valuable contextual information about the area such as landcover type, vegetation cover, soil types, enabling a better understanding of the disaster’s impact. In this study, we develop a model to assess the contribution of pre-disaster Sentinel-2 data in change detection tasks, focusing on disaster-affected areas. The proposed Context-Aware Change Detection Network (CACDN) utilizes a combination of pre-disaster Sentinel-2 data, pre and post-disaster Sentinel-1 data and ancillary Digital Elevation Models (DEMs) data. The model is validated on flood and landslide detection and evaluated using three metrics: Area Under the Precision-Recall Curve (AUPRC), Intersection over Union (IoU), and mean IoU. The preliminary results show significant improvement (4%, AUPRC, 3-7% IoU, 3-6% mean IoU) in model’s change detection capabilities when incorporated with pre-disaster optical data reflecting the effectiveness of using contextual information for accurate flood and landslide detection.

Ort, förlag, år, upplaga, sidor
Institute of Electrical and Electronics Engineers (IEEE) , 2023.
Nationell ämneskategori
Jordobservationsteknik
Identifikatorer
URN: urn:nbn:se:kth:diva-338769DOI: 10.1109/IGARSS52108.2023.10281798ISI: 001098971605224Scopus ID: 2-s2.0-85178343469OAI: oai:DiVA.org:kth-338769DiVA, id: diva2:1807175
Konferens
IGARSS 2023 - 2023 IEEE International Geoscience and Remote Sensing Symposium, Pasadena CA, USA, 16-21 July 2023
Anmärkning

Part of proceedings ISBN 979-8-3503-2010-7

QC 20231025

Tillgänglig från: 2023-10-25 Skapad: 2023-10-25 Senast uppdaterad: 2025-02-10Bibliografiskt granskad

Open Access i DiVA

Fulltext saknas i DiVA

Övriga länkar

Förlagets fulltextScopusConference website

Person

Yadav, RituNascetti, AndreaBan, Yifang

Sök vidare i DiVA

Av författaren/redaktören
Yadav, RituNascetti, AndreaBan, Yifang
Av organisationen
Geoinformatik
Jordobservationsteknik

Sök vidare utanför DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetricpoäng

doi
urn-nbn
Totalt: 76 träffar
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf