kth.sePublikationer KTH
Ändra sökning
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Absolute Quantification of Pan-Cancer Plasma Proteomes Reveals Unique Signature in Multiple Myeloma
KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Proteinvetenskap, Systembiologi. KTH, Centra, Science for Life Laboratory, SciLifeLab.ORCID-id: 0000-0002-5388-3826
KTH, Centra, Science for Life Laboratory, SciLifeLab. KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Proteinvetenskap, Systembiologi.ORCID-id: 0000-0002-2283-7237
KTH, Centra, Science for Life Laboratory, SciLifeLab. KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Proteinvetenskap, Systembiologi.ORCID-id: 0000-0001-8947-2562
KTH, Centra, Science for Life Laboratory, SciLifeLab. KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Proteinvetenskap, Systembiologi.ORCID-id: 0000-0002-2669-7796
Visa övriga samt affilieringar
2023 (Engelska)Ingår i: Cancers, ISSN 2072-6694, Vol. 15, nr 19, artikel-id 4764Artikel i tidskrift (Refereegranskat) Published
Abstract [en]

Mass spectrometry based on data-independent acquisition (DIA) has developed into a powerful quantitative tool with a variety of implications, including precision medicine. Combined with stable isotope recombinant protein standards, this strategy provides confident protein identification and precise quantification on an absolute scale. Here, we describe a comprehensive targeted proteomics approach to profile a pan-cancer cohort consisting of 1800 blood plasma samples representing 15 different cancer types. We successfully performed an absolute quantification of 253 proteins in multiplex. The assay had low intra-assay variability with a coefficient of variation below 20% (CV = 17.2%) for a total of 1013 peptides quantified across almost two thousand injections. This study identified a potential biomarker panel of seven protein targets for the diagnosis of multiple myeloma patients using differential expression analysis and machine learning. The combination of markers, including the complement C1 complex, JCHAIN, and CD5L, resulted in a prediction model with an AUC of 0.96 for the identification of multiple myeloma patients across various cancer patients. All these proteins are known to interact with immunoglobulins.

Ort, förlag, år, upplaga, sidor
MDPI AG , 2023. Vol. 15, nr 19, artikel-id 4764
Nyckelord [en]
DIA, multiple myeloma, precision medicine, targeted proteomics
Nationell ämneskategori
Cancer och onkologi Hematologi
Identifikatorer
URN: urn:nbn:se:kth:diva-338876DOI: 10.3390/cancers15194764ISI: 001086709700001PubMedID: 37835457Scopus ID: 2-s2.0-85173822408OAI: oai:DiVA.org:kth-338876DiVA, id: diva2:1808429
Anmärkning

QC 20231115

Tillgänglig från: 2023-10-31 Skapad: 2023-10-31 Senast uppdaterad: 2023-12-07Bibliografiskt granskad

Open Access i DiVA

Fulltext saknas i DiVA

Övriga länkar

Förlagets fulltextPubMedScopus

Person

Kotol, DavidWoessmann, JakobHober, AndreasAlvez, Maria BuenoFagerberg, LinnUhlén, MathiasEdfors, Fredrik

Sök vidare i DiVA

Av författaren/redaktören
Kotol, DavidWoessmann, JakobHober, AndreasAlvez, Maria BuenoTran Minh, Khue HuaFagerberg, LinnUhlén, MathiasEdfors, Fredrik
Av organisationen
SystembiologiScience for Life Laboratory, SciLifeLab
I samma tidskrift
Cancers
Cancer och onkologiHematologi

Sök vidare utanför DiVA

GoogleGoogle Scholar

doi
pubmed
urn-nbn

Altmetricpoäng

doi
pubmed
urn-nbn
Totalt: 152 träffar
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf