kth.sePublikationer
Ändra sökning
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
On Learning Embeddings at the Intersection of Communities and Roles
KTH, Skolan för elektroteknik och datavetenskap (EECS), Datavetenskap, Programvaruteknik och datorsystem, SCS.ORCID-id: 0000-0002-6899-6209
KTH, Skolan för elektroteknik och datavetenskap (EECS), Datavetenskap, Programvaruteknik och datorsystem, SCS.ORCID-id: 0000-0003-4516-7317
2023 (Engelska)Ingår i: Proceedings - 2023 10th International Conference on Social Networks Analysis, Management and Security, SNAMS 2023, Institute of Electrical and Electronics Engineers (IEEE) , 2023Konferensbidrag, Publicerat paper (Refereegranskat)
Abstract [en]

Graph Neural Networks (GNNs) have established themselves as the state of the art of encoding the nodes of a graph into a low-dimensional space by extracting features from the connectivity structure of the graph as well as the features of the nodes. However, since the embedding of a node is updated according to the information aggregated from the immediate neighborhood, a GNN tends to capture the community memberships of the nodes better than the other side of the coin: the role memberships, which quantify how much nodes carry out specific functions from a structural point of view. In this paper, we present RC-GNNs, a category of GNNs designed to learn embeddings from the community and the role memberships as well as the features of the nodes. RC-GNNs learn from different versions of the same graph, in which the nodes are connected according to either the community or the role memberships. Results show that, compared with models such as k-hop GNNs, k-GNNs, and MixHop, RC-GNNs are up to 4% more accurate in classifying the nodes of CiteSeer, Cora, and PubMed and up to 3% in classifying the graphs of MUTAG, PROTEINS, and Synthie.

Ort, förlag, år, upplaga, sidor
Institute of Electrical and Electronics Engineers (IEEE) , 2023.
Nyckelord [en]
Community Detection, Graph Classification, Graph Clustering, Graph Representation Learning, Node Classification, Role Discovery, Semi-Supervised Learning
Nationell ämneskategori
Datavetenskap (datalogi)
Identifikatorer
URN: urn:nbn:se:kth:diva-343178DOI: 10.1109/SNAMS60348.2023.10375479Scopus ID: 2-s2.0-85183474186OAI: oai:DiVA.org:kth-343178DiVA, id: diva2:1836080
Konferens
10th International Conference on Social Networks Analysis, Management and Security, SNAMS 2023, Abu Dhabi, United Arab Emirates, Nov 21 2023 - Nov 24 2023
Anmärkning

Part of ISBN: 979-8-3503-1890-6

QC 20240209

Tillgänglig från: 2024-02-08 Skapad: 2024-02-08 Senast uppdaterad: 2024-02-09Bibliografiskt granskad

Open Access i DiVA

Fulltext saknas i DiVA

Övriga länkar

Förlagets fulltextScopus

Person

Pozzoli, SusannaGirdzijauskas, Sarunas

Sök vidare i DiVA

Av författaren/redaktören
Pozzoli, SusannaGirdzijauskas, Sarunas
Av organisationen
Programvaruteknik och datorsystem, SCS
Datavetenskap (datalogi)

Sök vidare utanför DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetricpoäng

doi
urn-nbn
Totalt: 67 träffar
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf