kth.sePublikationer KTH
Ändra sökning
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Comparing Transfer Learning and Rollout for Policy Adaptation in a Changing Network Environment
KTH, Skolan för elektroteknik och datavetenskap (EECS), Datavetenskap, Nätverk och systemteknik.ORCID-id: 0000-0002-6343-7416
Ericsson Research, Sweden.
Ericsson Research, Sweden.
Ericsson Research, Sweden; Uppsala University, Department of Information Technology, Sweden.
Visa övriga samt affilieringar
2024 (Engelska)Ingår i: Proceedings of IEEE/IFIP Network Operations and Management Symposium 2024, NOMS 2024, Institute of Electrical and Electronics Engineers (IEEE) , 2024Konferensbidrag, Publicerat paper (Refereegranskat)
Abstract [en]

Dynamic resource allocation for network services is pivotal for achieving end-to-end management objectives. Previous research has demonstrated that Reinforcement Learning (RL) is a promising approach to resource allocation in networks, allowing to obtain near-optimal control policies for non-trivial system configurations. Current RL approaches however have the drawback that a change in the system or the management objective necessitates expensive retraining of the RL agent. To tackle this challenge, practical solutions including offline retraining, transfer learning, and model-based rollout have been proposed. In this work, we study these methods and present comparative results that shed light on their respective performance and benefits. Our study finds that rollout achieves faster adaptation than transfer learning, yet its effectiveness highly depends on the accuracy of the system model.

Ort, förlag, år, upplaga, sidor
Institute of Electrical and Electronics Engineers (IEEE) , 2024.
Nyckelord [en]
Istio, Kubernetes, Performance management, policy adaptation, reinforcement learning, rollout, service mesh
Nationell ämneskategori
Datavetenskap (datalogi)
Identifikatorer
URN: urn:nbn:se:kth:diva-351010DOI: 10.1109/NOMS59830.2024.10575398ISI: 001270140300103Scopus ID: 2-s2.0-85198375028OAI: oai:DiVA.org:kth-351010DiVA, id: diva2:1885685
Konferens
2024 IEEE/IFIP Network Operations and Management Symposium, NOMS 2024, Seoul, Korea, May 6 2024 - May 10 2024
Anmärkning

Part of ISBN 9798350327939

QC 20240725

Tillgänglig från: 2024-07-24 Skapad: 2024-07-24 Senast uppdaterad: 2024-09-27Bibliografiskt granskad

Open Access i DiVA

Fulltext saknas i DiVA

Övriga länkar

Förlagets fulltextScopus

Person

Samani, Forough ShahabStadler, Rolf

Sök vidare i DiVA

Av författaren/redaktören
Samani, Forough ShahabStadler, Rolf
Av organisationen
Nätverk och systemteknik
Datavetenskap (datalogi)

Sök vidare utanför DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetricpoäng

doi
urn-nbn
Totalt: 321 träffar
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf