kth.sePublikationer
Ändra sökning
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Graph linear prediction results in smaller error than standard linear prediction
KTH, Skolan för elektro- och systemteknik (EES), Signalbehandling. KTH, Skolan för elektro- och systemteknik (EES), Centra, ACCESS Linnaeus Centre.ORCID-id: 0000-0003-1285-8947
KTH, Skolan för elektro- och systemteknik (EES), Centra, ACCESS Linnaeus Centre. KTH, Skolan för elektro- och systemteknik (EES), Signalbehandling.ORCID-id: 0000-0003-2638-6047
KTH, Skolan för elektro- och systemteknik (EES), Signalbehandling. KTH, Skolan för elektro- och systemteknik (EES), Centra, ACCESS Linnaeus Centre.ORCID-id: 0000-0002-2718-0262
2015 (Engelska)Ingår i: 2015 23rd European Signal Processing Conference, EUSIPCO 2015, Institute of Electrical and Electronics Engineers (IEEE), 2015, s. 220-224Konferensbidrag, Publicerat paper (Refereegranskat)
Resurstyp
Text
Abstract [en]

Linear prediction is a popular strategy employed in the analysis and representation of signals. In this paper, we propose a new linear prediction approach by considering the standard linear prediction in the context of graph signal processing, which has gained significant attention recently. We view the signal to be defined on the nodes of a graph with an adjacency matrix constructed using the coefficients of the standard linear predictor (SLP). We prove theoretically that the graph based linear prediction approach results in an equal or better performance compared with the SLP in terms of the prediction gain. We illustrate the proposed concepts by application to real speech signals.

Ort, förlag, år, upplaga, sidor
Institute of Electrical and Electronics Engineers (IEEE), 2015. s. 220-224
Nyckelord [en]
autoregressive model, Graph signal processing, Linear prediction, Forecasting, Graphic methods, Adjacency matrices, Auto regressive models, Graph-based, Linear prediction approaches, Linear predictors, Real-speech signals, Signal processing
Nationell ämneskategori
Elektroteknik och elektronik
Identifikatorer
URN: urn:nbn:se:kth:diva-186792DOI: 10.1109/EUSIPCO.2015.7362377ISI: 000377943800045Scopus ID: 2-s2.0-84963976259ISBN: 9780992862633 (tryckt)OAI: oai:DiVA.org:kth-186792DiVA, id: diva2:938619
Konferens
23rd European Signal Processing Conference, EUSIPCO 2015, 31 August 2015 through 4 September 2015
Anmärkning

QC 20160617

Tillgänglig från: 2016-06-17 Skapad: 2016-05-13 Senast uppdaterad: 2024-03-15Bibliografiskt granskad

Open Access i DiVA

Fulltext saknas i DiVA

Övriga länkar

Förlagets fulltextScopus

Person

Venkitaraman, ArunChatterjee, SaikatHändel, Peter

Sök vidare i DiVA

Av författaren/redaktören
Venkitaraman, ArunChatterjee, SaikatHändel, Peter
Av organisationen
SignalbehandlingACCESS Linnaeus Centre
Elektroteknik och elektronik

Sök vidare utanför DiVA

GoogleGoogle Scholar

doi
isbn
urn-nbn

Altmetricpoäng

doi
isbn
urn-nbn
Totalt: 114 träffar
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf