kth.sePublications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Unsupervised Anomaly Detection in Receipt Data
KTH, School of Computer Science and Communication (CSC).
2017 (English)Independent thesis Advanced level (degree of Master (Two Years)), 20 credits / 30 HE creditsStudent thesisAlternative title
Oövervakad anomalidetektion i kvittodata (Swedish)
Abstract [en]

With the progress of data handling methods and computing power comes the possibility of automating tasks that are not necessarily handled by humans. This study was done in cooperation with a company that digitalizes receipts for companies. We investigate the possibility of automating the task of finding anomalous receipt data, which could automate the work of receipt auditors. We study both anomalous user behaviour and individual receipts. The results indicate that automation is possible, which may reduce the necessity of human inspection of receipts.

Abstract [sv]

Med de framsteg inom datahantering och datorkraft som gjorts så kommer också möjligheten att automatisera uppgifter som ej nödvändigtvis utförs av människor. Denna studie gjordes i samarbete med ett företag som digitaliserar företags kvitton. Vi undersöker möjligheten att automatisera sökandet av avvikande kvittodata, vilket kan avlasta revisorer. Vti studerar både avvikande användarbeteenden och individuella kvitton. Resultaten indikerar att automatisering är möjligt, vilket kan reducera behovet av mänsklig inspektion av kvitton

Place, publisher, year, edition, pages
2017. , p. 52
Keywords [en]
Anomaly detection, receipt, unsupervised
National Category
Computer Sciences
Identifiers
URN: urn:nbn:se:kth:diva-215161OAI: oai:DiVA.org:kth-215161DiVA, id: diva2:1146710
External cooperation
Skovik
Subject / course
Computer Science
Educational program
Master of Science in Engineering -Engineering Physics
Supervisors
Examiners
Available from: 2017-10-19 Created: 2017-10-03 Last updated: 2022-06-27Bibliographically approved

Open Access in DiVA

fulltext(2270 kB)650 downloads
File information
File name FULLTEXT01.pdfFile size 2270 kBChecksum SHA-512
002b843d037858edf6f21e0ea8d88815300e6880022a3b61c6217625491f76ce891a5cac58f365d3082fda5be2850995185a4d3496d3d1991cf6a4aa958e8172
Type fulltextMimetype application/pdf

By organisation
School of Computer Science and Communication (CSC)
Computer Sciences

Search outside of DiVA

GoogleGoogle Scholar
Total: 653 downloads
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

urn-nbn

Altmetric score

urn-nbn
Total: 960 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf