kth.sePublications KTH
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Renewable Thiol-Ene Thermosets Based on Refined and Selectively Allylated Industrial Lignin
KTH, School of Chemical Science and Engineering (CHE), Fibre and Polymer Technology. KTH, School of Chemical Science and Engineering (CHE), Centres, Wallenberg Wood Science Center.
KTH, School of Chemical Science and Engineering (CHE), Fibre and Polymer Technology. KTH, School of Chemical Science and Engineering (CHE), Centres, Wallenberg Wood Science Center.ORCID iD: 0000-0003-3201-5138
KTH, School of Chemical Science and Engineering (CHE), Fibre and Polymer Technology. KTH, School of Chemical Science and Engineering (CHE), Centres, Wallenberg Wood Science Center.
KTH, School of Chemical Science and Engineering (CHE), Fibre and Polymer Technology. KTH, School of Chemical Science and Engineering (CHE), Centres, Wallenberg Wood Science Center.
Show others and affiliations
2017 (English)In: ACS Sustainable Chemistry and Engineering, E-ISSN 2168-0485, Vol. 5, no 11, p. 10918-10925Article in journal (Refereed) Published
Abstract [en]

Aromatic material constituents derived from renewable resources are attractive for new biobased polymer systems. Lignin, derived from lignocellulosic biomass, is the most abundant natural source of such structures. Technical lignins are, however, heterogeneous in both structure and polydispersity and require a refining to obtain a more reproducible material. In this paper the ethanol-soluble fraction of Lignoboost Kraft lignin is selectively allylated using allyl chloride by means of a mild and industrially scalable procedure. Analysis using 1H-, 31P-, and 2D HSQC NMR give a detailed structural description of lignin, providing evidence of its functionalization and that the suggested procedure is selective toward phenols with a conversion of at least 95%. The selectively modified lignin is subsequently cross-linked using thermally induced thiol-ene chemistry. FT-IR is utilized to confirm the cross-linking reaction, and DSC measurements determined the Tg of the thermosets to be 45-65 °C depending on reactive group stoichiometry. The potential of lignin as a constituent in a thermoset application is demonstrated and discussed.

Place, publisher, year, edition, pages
American Chemical Society (ACS), 2017. Vol. 5, no 11, p. 10918-10925
Keywords [en]
Controlled refinery, Ethanol, Lignoboost Kraft lignin, Scalable procedure, Selective allylation, Thiol-ene thermoset
National Category
Chemical Sciences
Identifiers
URN: urn:nbn:se:kth:diva-218122DOI: 10.1021/acssuschemeng.7b02822ISI: 000414825900151Scopus ID: 2-s2.0-85033478836OAI: oai:DiVA.org:kth-218122DiVA, id: diva2:1159999
Funder
Knut and Alice Wallenberg Foundation
Note

QC 20171124

Available from: 2017-11-24 Created: 2017-11-24 Last updated: 2024-03-15Bibliographically approved
In thesis
1. Thermoset resins using technical lignin as a base constituent
Open this publication in new window or tab >>Thermoset resins using technical lignin as a base constituent
2019 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

The need to find sustainable paths for our society is imminent to tackle environmental concerns of today. The majority of all plastic materials are produced from crude oil but in the future a much larger portion must originate from renewable resources to address some of these problems. Aromatic molecules are often used when producing rigid and thermally stable polymeric materials but there are few natural sources for them. One is, however, the wood component lignin that is produced on a large scale from chemical pulping processes of biomass. Lignins aromatic structures could be an alternative for non-renewable aromatics in e.g. thermoset applications.

The heterogeneity of lignin does however present some problems in terms of e.g. dispersity, solubility, diverse functionality, and varying polymer backbone structure. To tackle these challenges, work-up of lignin and thorough characterization are important to be able to produce materials with predetermined, predictable, properties. Technical lignins have functional groups that can be utilized as chemical handles for further modifications required for different material systems e.g. phenols, aliphatic hydroxyls, and carboxylic acids.

This thesis focuses on how to utilize solvent fractionated, relatively well-characterized, LignoBoost Kraft lignin to produce thermoset resins by chemical modification and a crosslinking procedure. An efficient procedure to selectively allylate the phenolics, the most abundant functionality, of the lignin fractions has been developed and evaluated as well as a curing procedure using a thiol crosslinker and a thiol-ene reaction. The produced materials were analysed with regards to material properties, density, and morphology. The resins based on the selectively allylated lignin fractions were furthermore evaluated as a potential matrix for carbon fibre composites. It was shown that the material samples could be processed by pre-impregnating carbon fibres and form composite materials. The molecules of the lignin fraction were also used as core substrates in a ring-opening polymerization to produce functional star co-polymers. The procedure was evaluated and it could be shown that the lignin backbone was subjected to substantial structural changes of lignin inter-unit linkages.

Lignin being one of the few large resources of naturally occurring aromatics has a big potential to be used for material applications where rigidity and thermal stability is important. This thesis attempts to add a few pieces towards such a goal.

Abstract [sv]

Behovet av att hitta hållbara tillvägagångssätt för vårt samhälle ökar hela tiden för att bemöta dagens miljöutmaningar. Större delen av alla plastmaterial tillverkas idag av råolja men i framtiden måste en mycket större del produceras från förnyelsebara råvaror för att hantera några av dessa problem. Aromatiska molekyler används ofta vid tillverkning av styva och termiskt stabila material, dock finns det få naturliga källor för sådana. En är emellertid träkomponenten lignin som produceras i stor skala i kemisk massatillverkning. Lignins aromatiska strukturer kan vara ett alternativ för icke-förnyelsebara aromatiska molekylära byggstenar i t.ex. härdplastsapplikationer.

Lignins heterogenitet ger upphov till vissa problem i termer av t.ex. dispersitet, löslighet, olika funktionalitet och varierande polymerskelettstruktur. För att hantera dessa problem är upparbetning av lignin och noggrann karaktärisering viktigt för att material med förutbestämda och förutsägbara egenskaper ska kunna tillverkas. Tekniskt lignin har funktionella grupper som kan användas som kemiska handtag för modifieringar som krävs för användning i olika materialsystem.

Denna avhandling fokuserar på hur lösningsmedelsfraktionerad, relativt välkarakteriserad, LignoBoost Kraftlignin kan användas för att producera termiskt härdande hartser genom kemisk modifiering och tvärbindning. Ett effektivt sätt att selektivt allylera ligninfraktionernas fenol-grupper, den vanligaste av de funktionella grupperna, har utvecklats och utvärderats såväl som en härdningsprocedur med hjälp av en tiol-tvärbindare och tiol-en-kemi. De producerade materialen analyserades med avseende på materialegenskaper, densitet och morfologi. Harts baserad på en av de selektivt allylerade ligninfraktionen undersöktes även som en potentiell matris för kolfiberkompositer. Det kunde påvisas att genom för-impregnering av kolfibrer kunde kompositmaterial tillverkas. Molekylerna i de olika ligninfraktionerna användes även som kärnor för att producera funktionella sampolymerer genom ringöppningspolymerisation. Det kunde påvisas att ligninets molekylära uppbyggnad blev kraftigt påverkat av tekniken då intramolekylära bindningar bröts upp.  

Lignin som tillhör en av de mycket få stora naturligt förekommande råvarorna för aromatiska strukturer har stor potential för användning i materialapplikationer där hög styvhet och termisk stabilitet är viktiga egenskaper. Den här avhandlingen försöker bidra med några pusselbitar mot ett sådant mål. 

Place, publisher, year, edition, pages
Stockholm: KTH Royal Institute of Technology, 2019. p. 57
Series
TRITA-CBH-FOU ; 2020:2
National Category
Polymer Technologies
Research subject
Fibre and Polymer Science
Identifiers
urn:nbn:se:kth:diva-265010 (URN)978-91-7873-402-3 (ISBN)
Public defence
2020-01-31, F3, Lindstedtsvägen 26, Stockholm, 14:00 (English)
Opponent
Supervisors
Funder
Knut and Alice Wallenberg Foundation
Note

QC 2019-12-12

Available from: 2019-12-12 Created: 2019-12-11 Last updated: 2022-06-26Bibliographically approved

Open Access in DiVA

No full text in DiVA

Other links

Publisher's full textScopus

Authority records

Jawerth, MarcusJohansson, MatsLundmark, StefanGioia, ClaudioLawoko, Martin

Search in DiVA

By author/editor
Jawerth, MarcusJohansson, MatsLundmark, StefanGioia, ClaudioLawoko, Martin
By organisation
Fibre and Polymer TechnologyWallenberg Wood Science Center
In the same journal
ACS Sustainable Chemistry and Engineering
Chemical Sciences

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 540 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf