kth.sePublications KTH
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Numerical thermal performance investigation of a latent heat storage prototype toward effective use in residential heating systems
KTH, School of Industrial Engineering and Management (ITM), Energy Technology, Applied Thermodynamics and Refrigeration.ORCID iD: 0000-0001-8567-7405
KTH, School of Industrial Engineering and Management (ITM), Energy Technology, Applied Thermodynamics and Refrigeration.ORCID iD: 0000-0003-4789-4542
KTH, School of Industrial Engineering and Management (ITM), Energy Technology, Heat and Power Technology.ORCID iD: 0000-0001-6982-2879
KTH, School of Industrial Engineering and Management (ITM), Energy Technology, Applied Thermodynamics and Refrigeration.ORCID iD: 0000-0003-0911-0786
2020 (English)In: Applied Energy, ISSN 0306-2619, E-ISSN 1872-9118, Vol. 278, article id 115631Article in journal (Refereed) Published
Abstract [en]

Latent heat thermal energy storage has been receiving increasing interests in residential heating applications. In this paper, a numerical heat transfer model was built with finite element method for a cylindrically encapsulated latent heat storage prototype and used for investigating its thermal performance optimization measures. The model was validated against four sets of experimental results for both charge and discharge, as the difference in accumulated storage capacity between simulation and experiment is less than 4%. Transient storage inlet boundary conditions were set in simulation for discharge considering the thermal output from the coupled radiators. The results of the optimization analyses show that: 1) reducing the capsule diameter from 69 mm to 15 mm shortens the completion time of charge and discharge by up to 70%, however, at the expense of 23% decrease in total storage capacity; 2) using parabolic or linear time-increasing heat transfer fluid flowrate profiles than a time-constant one extends around twofold the useful discharge timespan; 3) increasing the storage vessel diameter from 0.6 m to 0.7 m and to 0.8 m prolongs the useful discharge timespan from 2 hrs to the recommended 3 hrs, though the further enlargement to 0.8 m results in a lower state of charge after 3 hrs due to increase in unexploited storage capacity. From the numerical optimization study, we proposed a storage design adjustment of using 15 mm-diameter phase change material capsules in a 0.7 m-diameter cylindrical storage vessel, coupled with a parabolic flow strategy, to improve the storage on-peak discharging performance.

Place, publisher, year, edition, pages
Elsevier, 2020. Vol. 278, article id 115631
Keywords [en]
Phase change material, Heat transfer simulation, Thermal performance investigation, Residential heating system, Cylindrical encapsulation
National Category
Energy Engineering
Identifiers
URN: urn:nbn:se:kth:diva-278902DOI: 10.1016/j.apenergy.2020.115631ISI: 000595257500003Scopus ID: 2-s2.0-85089068664OAI: oai:DiVA.org:kth-278902DiVA, id: diva2:1456854
Funder
Swedish Energy Agency, P40935-1
Note

QC 20200818

Available from: 2020-08-07 Created: 2020-08-07 Last updated: 2022-09-13Bibliographically approved
In thesis
1. Integrating Latent Heat Storage into Residential Heating Systems: A study from material and component characterization to system analysis
Open this publication in new window or tab >>Integrating Latent Heat Storage into Residential Heating Systems: A study from material and component characterization to system analysis
2021 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

Latent heat thermal energy storage (LHTES) systems can be coupled with heat pump (HP) systems to realize heat load shifting on demand side. With phase change material (PCM), well designed LHTES components exhibit high storage energy density and thus have large potentials to be integrated in residence where a compact energy storage solution is needed. However, real installations of LHTES-HP integrated systems are still rare nowadays; feasibility of this technology in achieving technically sound and economically viable load shifting operations should be demonstrated and understood by stakeholders to promote its implementation. Therefore, this thesis presents an exemplary feasibility study for three selected off-the-shelf macro-encapsulated PCM products, encompassing in-depth experimental and numerical modelling investigations on three levels—material, component, and system. The feasibility is studied with a specific scenario where the macro-encapsulated LHTES systems are designed to integrate with HP-based heating systems in common Swedish residential buildings. 

On the material level, three commercial PCMs (C48, C58, and ATP60) are selected by the operating temperature levels in typical HP-based space heating systems. Differential Scanning Calorimetry and Temperature-History method are employed to measure PCM enthalpy-temperature profiles; Transient Plane Source method is used to measure the thermal conductivity of ATP60. C58 based on sodium acetate trihydrate is prioritized for in-depth feasibility analyses because of its highest volumetric heat storage capacity.

On the component level, three full-scale macro-encapsulated LHTES components (Component 1: cylindrical encapsulation of C48; Component 2: cylindrical encapsulation of C58; Component 3: ellipsoidal encapsulation of ATP60) are developed for integration in single-family houses to achieve full peak load shifting. A test rig is built for characterizing the three components under possible operational conditions in practical systems. The heat transfer enhancing effects from increasing the temperature difference between heat transfer fluid (HTF) inlet temperature and phase-change temperature as well as from increasing the HTF inlet flowrate are quantified. Performance indicators, such as completion time of charge/discharge, energy storage density, and capacity enhancement factor, are evaluated at different operating temperature ranges. Overall, Component 2 is feasible in delivering around 90% of storage capacity (the capacity loss is due to phase separation). However, storage design and control improvements are still needed for realizing full peak load shifting over a three-hour discharging process. For Component 2, an improved storage solution with a reduced capsule diameter and time-increasing HTF flowrate profiles is developed through numerical simulation using an experimentally-validated two-dimensional heat transfer model. Furthermore, a one-dimensional model is developed and validated for simulating storage thermal output of Components 2 and 3. 

On the system level, a numerical model is developed to calculate electricity input to the LHTES-HP integrated systems for technical, economic, and environmental load shifting evaluation. Three new integration layouts are developed to charge scaled-up Component 2 with a de-superheater and/or a booster heat pump cycle. The new layouts can improve the weekly heating performance factor by 22%–26%, compared with a conventional layout using the condenser for charging. Savings in operational expenses can justify a capital expense of 25,000 Swedish Krona (about 2,500 €) for the LHTES system with a 15-yr operation. Although this justifiable capital expense is lower than the storage component cost alone estimated with the cost of Component 2, it is anticipated that similar LHTES solutions may gain more economic feasibilities with larger peak-valley electricity price differences foreseeable in the future. 

Through presentation of the multi-level feasibility evaluation, this thesis identifies key design and operational issues which might be neglected in single-level investigations. Furthermore, the thesis develops two new LHTES-HP integrated solutions with improved storage design/control strategies and enhanced system coupling methods from the existing solutions. This provides application-oriented insight for design and operation of the load-shift based LHTES installations in residential buildings, potentially contributing to decarbonisation of the increasingly electrified heating sector. 

Abstract [sv]

Latenta värmeenergilagringssystem (eng. LHTES) kan kopplas till värmepumpsystem (eng. HP) för att uppnå en förskjutning av värmebehovet. Med fasförändringsmaterial (eng. PCM) uppvisar väldesignade LHTES-komponenter hög lagringsenergitäthet och har således stora möjligheter att integreras i bostäder där en kompakt lagringslösning efterfrågas. Men installationer av LHTES-HP-integrerade system är fortfarande knappa nuförtiden eftersom att det är nödvändigt att demonstera möjligheten hos denna teknik att uppnå tekniskt och ekonomiskt sund förskjutning av värmelaster samt öka föreståelsen hos intressenter för att främja implementering av tekniken. Således presenterar denna avhandling en studie på implementeringen av tre utvalda och tillgängliga makroinkapslade PCM-produkter. Studien omfattar djupgående undersökningar med experimentella och numeriska modellering på tre nivåer – material-, komponent- och system-nivå. Implementeringen studeras utifrån ett specifikt scenario där de makroinkapslade LHTES-systemen är utformade för att integreras med HP-baserade värmesystem i typiska svenska bostadshus.

På materialsidan väljs tre kommersiella PCM:er (C48, C58 och ATP60) utifrån arbetstemperatursnivån i typiska HP-baserade värmesystem. Metoderna Differential Scanning Calorimetry och Temperature History används för att mäta PCM:ens entalpi-temperaturprofiler; Metoden Transient Plane Source används för att mäta ATP60:s värmeledningsförmåga. C58, som är baserat på natriumacetat trihydrat, prioriteras för noggranna genomförbarhets analyser på grund av sin högsta värmelagringskapacitet.

På komponentnivå utvecklas tre fullskaliga makroinkapslade LHTES-komponenter (Komponent 1: cylindrisk inkapsling av C48; Komponent 2: cylindrisk kapsling av C58; Komponent 3: ellipsoid inkapsling av ATP60) för integrering i enfamiljshus för att uppnå full Peak Load Shifting (förskjutning av värmelasten under toppeffekttimmarna). En testprototyp byggs för att testa dessa tre komponenter under olika driftförhållanden som kan förekomma i typiska värmesystem. Effekten av att öka temperaturskillnaden mellan värmeöverföringsfluidens (eng. HTF) inloppstemperatur och smältpunkt samt att öka HTF-inloppsflödeshastigheten är en ökade värmeöverföring, vilken kvantifieras. Prestandaindikatorer såsom tid för total laddning / urladdning av prototypen, energilagringstäthet och kapacitetsförbättringsfaktor utvärderas vid olika driftstemperaturområden. Sammantaget kan Komponent 2 leverera cirka 90% av lagringskapaciteten (kapacitetsförlusten beror på fasseparation). Dock behövs det fortfarande förbättring i lagringsdesign och styrstrategin för att uppnå total Peak Load Shifting under en 3-timmars urladdningsprocess. För komponent 2 har det utvecklats en förbättrad lagringslösning med reducerad kapseldiameter och tids-ökande HTF-flödesprofiler genom numerisk simulering med en experimentellt validerad tvådimensionell värmeöverföringsmodell. Vidare har det utvecklats en endimensionell modell för att simulera värmelagringskapacitet för Komponent 2 och 3.

På systemnivån har det utvecklats en numerisk modell för att beräkna elektricitetskonsumption hos de LHTES-HP integrerade systemen för teknisk, ekonomisk och miljömässig utvärdering av förskjutning av värmelasterna. Tre nya integrationslayouter har utvecklats för att ladda Komponent 2 med en de-superheater och/eller en booster-värmepumpcykel. De nya layouterna kan förbättra den värmeprestandafaktorn (som beräknas för en vecka) med 22%–26% jämfört med en vanlig layout där kondensorn används för laddning av Komponent 2. Besparingarna i driftskostnaderna kan motivera en kapitalkostnad på 25 k SEK för LHTES-systemet med 15-årig teknisk livslängd. Även om denna motiverade kapitalkostnaden är lägre än kostnaden för enbart LHTES-komponenten under de nuvarande marknadsförhållandena, förväntas sådana LHTES-lösningar bli ekonomiskt genomförbara med större prisskillnader i elpriser i framtida marknaden.

Genom utvärdering av implementeringen på flera nivåer identifierar denna avhandling avgörande design- och driftsproblem som möjligtvis blir försummade i en studie som genomförs på enbart en nivå. Dessutom utvecklar avhandlingen nya LHTES-HP-integrerade lösningar med förbättrade lagringsdesigner, styrstrategier och systemkopplingsmetoder jämfört med befintliga lösningar. Detta ger en applikationsorienterad insikt för design och drift av framtida LHTES-installationer, vilket kan bidra till dekarbonisering av den allt mer elektrifierade uppvärmnings sektorn.

Nyckelord: fasförändringsmaterial, värmeenergilagring, värmepump, lastförskjutning, rymdvärme.

 

Place, publisher, year, edition, pages
Stockholm Sweden: KTH Royal Institute of Technology, 2021. p. 171
Series
TRITA-ITM-AVL ; 2021:15
Keywords
phase change material, thermal energy storage, heat pump, load shifting, space heating
National Category
Energy Engineering
Research subject
Energy Technology
Identifiers
urn:nbn:se:kth:diva-293768 (URN)978-91-7873-845-8 (ISBN)
Public defence
2021-05-31, https://kth-se.zoom.us/j/69874578112, Stockholm, 13:00 (English)
Opponent
Supervisors
Available from: 2021-05-04 Created: 2021-04-30 Last updated: 2022-06-25Bibliographically approved

Open Access in DiVA

No full text in DiVA

Other links

Publisher's full textScopus

Authority records

Xu, TianhaoNyholm Humire, EmmaChiu, Ning-WeiSawalha, Samer

Search in DiVA

By author/editor
Xu, TianhaoNyholm Humire, EmmaChiu, Ning-WeiSawalha, Samer
By organisation
Applied Thermodynamics and RefrigerationHeat and Power Technology
In the same journal
Applied Energy
Energy Engineering

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 441 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf