kth.sePublications KTH
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Finite Element simulations: computations and applications to aerodynamics and biomedicine
KTH, School of Electrical Engineering and Computer Science (EECS), Computer Science, Computational Science and Technology (CST). Basque Center for Applied Mathematics.ORCID iD: 0000-0001-5572-5234
2020 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

  Partial Differential Equations describe a large number of phenomena of practical interest and their solution usually requires running huge simulations on supercomputing clusters.  Especially when dealing with turbulent flows, the cost of such simulations, if approached naively, makes them unfeasible, requiring modelling intervention.  This work is concerned with two main aspects in the field of Computational Sciences.  On the one hand we explore new directions in turbulence modelling and simulation of turbulent flows; we use an adaptive Finite Element Method and an \emph{infinite Reynolds number} model to reduce the computational cost of otherwise intractable simulations, showing that we are able to perform time-dependent computations of turbulent flows at very high Reynolds numbers, considered the main challenge in modern aerodynamics.  The other focus of this work is on biomedical applications.  We develop a computational model for (Cardiac) Radiofrequency Ablation, a popular clinical procedure administered to treat a variety of conditions, including arrhythmia.  Our model improves on the state of the art in several ways, most notably addressing the critical issue of accurately approximating the geometry of the configuration, which proves indispensable to correctly reproduce the physics of the phenomenon.

Abstract [sv]

    Partiella differentialekvationer kan användas för att beskriva ett stort antal fenomen av praktiskt intresse.    Vanligtvis krävs enorma simuleringar på superdatorkluster för att hitta deras lösningar.    I synnerhet vid arbete med turbulent flöde.    Dessa simuleringar är så resurskrävande att utan specialbehandling så är de ohanterbara och kräver manuella modelleringsingrepp.    Denna avhandling består av två huvuddelar.    Först utforskar vi nya riktningar i turbulensmodellering och simulering av turbulent flöde.    Vi använder oss av en adaptiv finit elementmetod och en modell med  oändliga \emph{Reynoldstal} för att reducera beräkningskostnaden för annars ohanterbara simuleringar.    Avhandlingen visar att vi lyckats utföra tidsberoende beräkningar av turbulent flöde vid väldigt höga Reynoldstal, vilket är en av de stora utmaningarna i modern aerodynamik.    Den andra delen i denna avhandlingen fokuserar på biomedicinska tillämpningar.    Vi har utvecklat en modell för radiofrekvensablation, ett populärt medicinskt ingrepp som är del i behandlingen av ett flertal sjukdomar, inklusive arytmi.    Vår modell överträffar befintliga modeller på flera punkter.    Mest markant genom att noggrant approximera  konfigurationens geometri, vilket är väsentligt för att korrekt kunna reproducera fenomenets fysik.

Abstract [es]

    Las ecuaciones en derivadas parciales describen muchos fenómenos de interés práctico y sus soluciones suelen necesitar correr simulaciones muy costosas en clústers de cálculo.    En el ámbito de los flujos turbulentos, en particular, el coste de las simulaciones es demasiado grande si se utilizan métodos básicos, por eso es necesario modelizar el sistema.    Esta tesis doctoral trata principalmente de dos temas en Cálculo Científico.    Por un lado, estudiamos nuevos desarrollos en la modelización y simulación de flujos turbulentos; utilizamos un Método de Elementos Finitos adaptativo y un modelo de \emph{número de Reynolds infinito} para reducir el coste computacional de simulaciones que, sin estas modificaciones, serían demasiado costosas.    De esta manera conseguimos lograr simulaciones evolutivas de flujos turbulentos con número de Reynolds muy grande, lo cual se considera uno de los mayores retos en aerodinámica.    El otro pilar de esta tesis es una aplicación biomédica.    Desarrollamos un modelo computacional de Ablación (Cardiaca) por Radiofrecuencia, una terapia común para tratar varias enfermedades, por ejemplo algunas arritmias.    Nuestro modelo mejora los modelos existentes en varias maneras, y en particular en tratar de obtener una aproximación fiel de la geometría del sistema, lo cual se descubre ser crítico para simular correctamente la física del fenómeno.

Place, publisher, year, edition, pages
Stockholm: KTH Royal Institute of Technology, 2020. , p. 68
Series
TRITA-EECS-AVL ; 2020:66
Keywords [en]
radiofrequency ablation, finite elements, numerical simulations, partial differential equations, biomedical applications, HPC
National Category
Computational Mathematics
Research subject
Computer Science
Identifiers
URN: urn:nbn:se:kth:diva-285936ISBN: 978-91-7873-710-9 (print)OAI: oai:DiVA.org:kth-285936DiVA, id: diva2:1500895
Public defence
2020-12-11, Kollegiesalen, Brinellvägen 8, Stockholm, 14:00 (English)
Opponent
Supervisors
Note

QC 20201118

Available from: 2020-11-16 Created: 2020-11-13 Last updated: 2022-06-25Bibliographically approved
List of papers
1. Portable simulation framework for diffusion MRI
Open this publication in new window or tab >>Portable simulation framework for diffusion MRI
Show others...
2019 (English)In: Journal of magnetic resonance, ISSN 1090-7807, E-ISSN 1096-0856, Vol. 309, article id 106611Article in journal (Refereed) Published
Abstract [en]

The numerical simulation of the diffusion MRI signal arising from complex tissue micro-structures is helpful for understanding and interpreting imaging data as well as for designing and optimizing MRI sequences. The discretization of the Bloch-Torrey equation by finite elements is a more recently developed approach for this purpose, in contrast to random walk simulations, which has a longer history. While finite elements discretization is more difficult to implement than random walk simulations, the approach benefits from a long history of theoretical and numerical developments by the mathematical and engineering communities. In particular, software packages for the automated solutions of partial differential equations using finite elements discretization, such as FEniCS, are undergoing active support and development. However, because diffusion MRI simulation is a relatively new application area, there is still a gap between the simulation needs of the MRI community and the available tools provided by finite elements software packages. In this paper, we address two potential difficulties in using FEniCS for diffusion MRI simulation. First, we simplified software installation by the use of FEniCS containers that are completely portable across multiple platforms. Second, we provide a portable simulation framework based on Python and whose code is open source. This simulation framework can be seamlessly integrated with cloud computing resources such as Google Colaboratory notebooks working on a web browser or with Google Cloud Platform with MPI parallelization. We show examples illustrating the accuracy, the computational times, and parallel computing capabilities. The framework contributes to reproducible science and open-source software in computational diffusion MRI with the hope that it will help to speed up method developments and stimulate research collaborations.

Place, publisher, year, edition, pages
Academic Press, 2019
Keywords
Cloud computing, diffusion MRI, Bloch-Torrey equation, interface conditions, pseudo-periodic conditions, FEniCS.
National Category
Mathematics
Research subject
Applied and Computational Mathematics
Identifiers
urn:nbn:se:kth:diva-256328 (URN)10.1016/j.jmr.2019.106611 (DOI)000497799500005 ()31574354 (PubMedID)2-s2.0-85072714990 (Scopus ID)
Note

QC 20190822

Available from: 2019-08-21 Created: 2019-08-21 Last updated: 2024-03-18Bibliographically approved
2. Time-resolved Adaptive Direct FEM Simulation of High-lift Aircraft Configurations: Chapter in "Numerical Simulation of the Aerodynamics of High-Lift Configurations'", Springer
Open this publication in new window or tab >>Time-resolved Adaptive Direct FEM Simulation of High-lift Aircraft Configurations: Chapter in "Numerical Simulation of the Aerodynamics of High-Lift Configurations'", Springer
Show others...
2018 (English)In: Numerical Simulation of the Aerodynamics of High-Lift Configurations / [ed] Omar Darío López Mejia andJaime A. Escobar Gomez, Springer, 2018, p. 67-92Chapter in book (Refereed)
Abstract [en]

We present an adaptive finite element method for time-resolved simulation of aerodynamics without any turbulence-model parameters, which is applied to a benchmark problem from the HiLiftPW-3workshop to compute the flowpast a JAXA Standard Model (JSM) aircraft model at realistic Reynolds numbers. The mesh is automatically constructed by the method as part of an adaptive algorithm based on a posteriori error estimation using adjoint techniques. No explicit turbulence model is used, and the effect of unresolved turbulent boundary layers is modeled by a simple parametrization of the wall shear stress in terms of a skin friction. In the case of very high Reynolds numbers, we approximate the small skin friction by zero skin friction, corresponding to a free-slip boundary condition, which results in a computational model without any model parameter to be tuned, and without the need for costly boundary-layer resolution. We introduce a numerical tripping-noise term to act as a seed for growth of perturbations; the results support that this triggers the correct physical separation at stall and has no significant pre-stall effect. We show that the methodology quantitavely and qualitatively captures the main features of the JSM experiment-aerodynamic forces and the stall mechanism-with a much coarser mesh resolution and lower computational cost than the state-of-the-art methods in the field, with convergence under mesh refinement by the adaptive method. Thus, the simulation methodology appears to be a possible answer to the challenge of reliably predicting turbulent-separated flows for a complete air vehicle.

Place, publisher, year, edition, pages
Springer, 2018
National Category
Computational Mathematics
Identifiers
urn:nbn:se:kth:diva-211705 (URN)10.1007/978-3-319-62136-4_5 (DOI)2-s2.0-85053970698 (Scopus ID)
Note

QC 20241108

Part of ISBN 978-3-319-62136-4, 978-3-319-62135-7

Available from: 2017-08-09 Created: 2017-08-09 Last updated: 2024-11-08Bibliographically approved
3. A computational model of open-irrigated radiofrequency catheter ablation accounting for mechanical properties of the cardiac tissue
Open this publication in new window or tab >>A computational model of open-irrigated radiofrequency catheter ablation accounting for mechanical properties of the cardiac tissue
Show others...
2019 (English)In: International Journal for Numerical Methods in Biomedical Engineering, ISSN 2040-7939, E-ISSN 2040-7947, Vol. 35, no 11, article id e3232Article in journal (Refereed) Published
Abstract [en]

Radiofrequency catheter ablation (RFCA) is an effective treatment for cardiac arrhythmias. Although generally safe, it is not completely exempt from the risk of complications. The great flexibility of computational models can be a major asset in optimizing interventional strategies if they can produce sufficiently precise estimations of the generated lesion for a given ablation protocol. This requires an accurate description of the catheter tip and the cardiac tissue. In particular, the deformation of the tissue under the catheter pressure during the ablation is an important aspect that is overlooked in the existing literature, which resorts to a sharp insertion of the catheter into an undeformed geometry. As the lesion size depends on the power dissipated in the tissue and the latter depends on the percentage of the electrode surface in contact with the tissue itself, the sharp insertion geometry has the tendency to overestimate the lesion obtained, which is a consequence of the tissue temperature rise overestimation. In this paper, we introduce a full 3D computational model that takes into account the tissue elasticity and is able to capture tissue deformation and realistic power dissipation in the tissue. Numerical results in FEniCS-HPC are provided to validate the model against experimental data and to compare the lesions obtained with the new model and with the classical ones featuring a sharp electrode insertion in the tissue.

Place, publisher, year, edition, pages
Wiley, 2019
Keywords
elastic tissue deformation, finite elements, open-irrigated catheter, radiofrequency ablation
National Category
Computational Mathematics
Identifiers
urn:nbn:se:kth:diva-262943 (URN)10.1002/cnm.3232 (DOI)000489486100001 ()31256443 (PubMedID)2-s2.0-85074019062 (Scopus ID)
Note

QC 20191202

Available from: 2019-12-02 Created: 2019-12-02 Last updated: 2022-06-26Bibliographically approved
4. Tissue Drives Lesion: Computational Evidence of Interspecies Variability in Cardiac Radiofrequency Ablation
Open this publication in new window or tab >>Tissue Drives Lesion: Computational Evidence of Interspecies Variability in Cardiac Radiofrequency Ablation
Show others...
2019 (English)In: FUNCTIONAL IMAGING AND MODELING OF THE HEART, FIMH 2019 / [ed] Coudiere, Y Ozenne, V Vigmond, E Zemzemi, N, SPRINGER INTERNATIONAL PUBLISHING AG , 2019, p. 139-146Conference paper, Published paper (Refereed)
Abstract [en]

Radiofrequency catheter ablation (RFCA) is widely used for the treatment of various types of cardiac arrhythmias. Typically, the efficacy and the safety of the ablation protocols used in the clinics are derived from tests carried out on animal specimens, including swines. However, these experimental findings cannot be immediately translated to clinical practice on human patients, due to the difference in the physical properties of the types of tissue. Computational models can assist in the quantification of this variability and can provide insights in the results of the RFCA for different species. In this work, we consider a standard ablation protocol of 10 g force, 30 W power for 30 s. We simulate its application on a porcine cardiac tissue, a human ventricle and a human atrium. Using a recently developed computational model that accounts for the mechanical properties of the tissue, we explore the onset and the growth of the lesion along time by tracking its depth and width, and we compare the lesion size and dimensions at the end of the ablation.

Place, publisher, year, edition, pages
SPRINGER INTERNATIONAL PUBLISHING AG, 2019
Series
Lecture Notes in Computer Science, ISSN 0302-9743 ; 11504
Keywords
Radiofrequency catheter ablation, Mathematical model, Tissue properties, Interspecies variability
National Category
Cardiology and Cardiovascular Disease Radiology, Nuclear Medicine and Medical Imaging
Identifiers
urn:nbn:se:kth:diva-264870 (URN)10.1007/978-3-030-21949-9_16 (DOI)000495643700016 ()2-s2.0-85067183261 (Scopus ID)
Conference
10th International Conference on Functional Imaging and Modeling of the Heart (FIMH), JUN 06-08, 2019, Bordeaux, FRANCE
Note

QC 20191209

Part of ISBN 978-3-030-21949-9, 978-3-030-21948-2

Available from: 2019-12-09 Created: 2019-12-09 Last updated: 2025-02-10Bibliographically approved
5. Effect of Tissue Elasticity in Cardiac Radiofrequency Catheter Ablation Models
Open this publication in new window or tab >>Effect of Tissue Elasticity in Cardiac Radiofrequency Catheter Ablation Models
Show others...
2018 (English)In: 2018 COMPUTING IN CARDIOLOGY CONFERENCE (CINC), IEEE , 2018Conference paper, Published paper (Refereed)
Abstract [en]

Radiofrequency catheter ablation (RFCA) is an effective treatment for different types of cardiac arrhythmias. However, major complications can occur, including thrombus formation and steam pops. We present a full 3D mathematical model for the radiofrequency ablation process that uses an open-irrigated catheter and accounts for the tissue deformation, an aspect overlooked by the existing literature. An axisymmetric Boussinesq solution for spherical punch is used to model the deformation of the tissue due to the pressure of the catheter tip at the tissue-catheter contact point. We compare the effect of the tissue deformation in the RFCA model against the use of a standard sharp insertion of the catheter in the tissue that other state-of-the-art RFCA computational models use.

Place, publisher, year, edition, pages
IEEE, 2018
Series
Computing in Cardiology Conference, ISSN 2325-8861
National Category
Computational Mathematics
Identifiers
urn:nbn:se:kth:diva-260235 (URN)10.22489/CinC.2018.035 (DOI)000482598700081 ()2-s2.0-85068784341 (Scopus ID)978-1-7281-0958-9 (ISBN)
Conference
45th Computing in Cardiology Conference (CinC), SEP 23-26, 2018, Maastricht, NETHERLANDS
Note

QC 20190927

Available from: 2019-09-27 Created: 2019-09-27 Last updated: 2024-03-18Bibliographically approved
6. Systematic characterization of High-Power Short-Duration Ablation: Insight from an advanced virtual model
Open this publication in new window or tab >>Systematic characterization of High-Power Short-Duration Ablation: Insight from an advanced virtual model
Show others...
(English)Manuscript (preprint) (Other academic)
National Category
Medical and Health Sciences
Identifiers
urn:nbn:se:kth:diva-285956 (URN)
Note

QC 20210217

Available from: 2020-11-16 Created: 2020-11-16 Last updated: 2022-06-25Bibliographically approved

Open Access in DiVA

fulltext(84678 kB)679 downloads
File information
File name FULLTEXT02.pdfFile size 84678 kBChecksum SHA-512
6db93775a5fc58c04ead0c34dc1bd2664f046397b5d3d3a7a88b4ff8a05c5084d134ddf8816170d9e4c32ccf5fc7c254c2185c9fdb7909aa9d522393ae28a30f
Type fulltextMimetype application/pdf

Other links

Zoom link for online defence

Authority records

Leoni, Massimiliano

Search in DiVA

By author/editor
Leoni, Massimiliano
By organisation
Computational Science and Technology (CST)
Computational Mathematics

Search outside of DiVA

GoogleGoogle Scholar
Total: 682 downloads
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

isbn
urn-nbn

Altmetric score

isbn
urn-nbn
Total: 979 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf