kth.sePublications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Wet-expandable capsules made from partially modified cellulose
KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology, Fibre Technology.ORCID iD: 0000-0003-1926-2193
KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology, Fibre Technology.ORCID iD: 0000-0002-0974-9638
KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology.ORCID iD: 0000-0002-5444-7276
KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology.
Show others and affiliations
2020 (English)In: Green Chemistry, ISSN 1463-9262, E-ISSN 1463-9270, Vol. 22, no 14, p. 4581-4592Article in journal (Refereed) Published
Abstract [en]

Preparation of lightweight and biocompatible hollow capsules holds great promise for various advanced engineering applications. Here, we use a heterogeneously modified structure of cellulose, which on the molecular level increases the flexibility of the capsule shell, to form hollow capsules. These capsules expand in the wet state when they are exposed to an external stimulus, in the present case a decreased external pressure. The capsules were prepared by a dropwise precipitation of a propane-saturated solution of cellulose partially modified to dialcohol cellulose, dissolved in a mixture ofN,N-dimethylacetamide and lithium chloride, into a non-solvent. The mechanical properties of the capsules were determined by measuring the expansion of the capsules upon a controlled decrease in external pressure. In addition, indentation measurements using atomic force microscopy were used to independently quantify the moduli of the capsule walls. The results show that the wet, modified cellulose capsules are much softer and, upon the same pressure change, expand significantly more than those made from unmodified cellulose. The greatest expansion observed for the modified capsules was 1.9 times the original volume, which corresponds to a final density of the expanded capsules of about 14 kg m(-3). These capsules therefore hold great potential to form green and lightweight foam-like materials.

Place, publisher, year, edition, pages
ROYAL SOC CHEMISTRY , 2020. Vol. 22, no 14, p. 4581-4592
National Category
Other Chemistry Topics
Identifiers
URN: urn:nbn:se:kth:diva-278915DOI: 10.1039/d0gc01523gISI: 000550567200018Scopus ID: 2-s2.0-85089284846OAI: oai:DiVA.org:kth-278915DiVA, id: diva2:1501885
Note

QC 20201118

Available from: 2020-11-18 Created: 2020-11-18 Last updated: 2022-06-25Bibliographically approved
In thesis
1. Use of Cellulose for the Preparation of Capsules and Beads with Molecularly Tailored Properties
Open this publication in new window or tab >>Use of Cellulose for the Preparation of Capsules and Beads with Molecularly Tailored Properties
2022 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

The continuously increasing global production of petroleum-based polymers to meet the ever growing demand for plastics for use in a multitude of industrial sectors (e.g. packaging and textiles) has an impact on human health, climate change and the entire ecosystem. Therefore, there is a need to develop truly biodegradable, high-performance materials from renewable resources that can replace conventional plastics. These environmentally friendly alternative materials must possess similar properties to the materials they are replacing. The excellent mechanical properties, good chemical stability and straightforward functionalization of cellulose makes it an excellent candidate raw material that can initiate a transition away from petroleum-based plastics and toward more sustainable future.

This thesis investigates the use of native and partially modified cellulose for the preparation of hollow or liquid-filled capsules and solid beads with unique and well-controlled structural and mechanical properties. The shaping of materials was made possible by the dissolution of cellulose in a suitable solvent, followed by its regeneration. Two different methods for preparing these cellulose-based materials are proposed: a solution–solidification method that creates millimeter-sized hollow capsules and solid beads, and an emulsification-solvent-evaporation method that results in the formation of micrometer scale liquid-filled capsules. The partial conversion of cellulose to dialcohol cellulose and cellulose acetate introduced flexibility and thermoplastic features to the cellulose materials. This resulted in the formation of stimuli-responsive capsules with properties suitable for different industrial applications; for example, in the production of next-generation lightweight materials. The hollow dialcohol-modified cellulose capsules exhibit a tendency, when wet, to expand to almost double their volume when exposed to a decreased external pressure, whereas the dry liquid-filled cellulose acetate capsules show a thermal expansion up to 60 times their original volume. Apart from the chemical modifications, the work discusses a method of altering the properties of cellulose beads by inclusion of cellulose nanocrystals, creating an all-cellulose composite material.

The thesis also includes model studies focused on a better understanding of the evolution of the internal structure of regenerated cellulose beads during drying from different solvents. A combination of small-angle X-ray scattering, wide-angle X-ray scattering and atomic force microscopy indentation techniques allowed the monitoring of the macro- and micro-scale structural changes taking place within the beads, as well as a continuous evaluation of the mechanical properties of beads upon solvent evaporation. This work provides a fundamental understanding of the mechanisms and molecular interactions characteristic of the drying of cellulosic materials.

Abstract [sv]

Den ständigt ökande världsproduktionen av fossilbaserade polymerer och syntetiska plaster i olika industrisektorer (t.ex. förpackningar, textilier) har en enorm inverkan på människors hälsa, klimatförändringar och hela vårt ekosystem. Därför finns det en stor drivkraft att utveckla verkligt biologiskt nedbrytbara högpresterande material från förnyelsebara råvaror som kan fungera som en bra ersättning av syntetisk plast vilket innebär att de också måste ha liknande egenskaper för att vara trovärdiga. Utmärkta mekaniska egenskaper, god kemisk stabilitet, goda kemiska funktionaliseringsmöjligheter och enorm årlig produktion innebär att cellulosa är en utmärkt kandidat som råvara som, åtminstone, kan vara en lämplig förnyelsebar råvara för omställningen mot en mer hållbar framtid.

Arbetet i denna avhandling undersöker användningen av nativ och delvis modifierad cellulosa för framställning av sfäriska material i form av ihåliga eller vätskefyllda kapslar och fasta sfärer med unika och välkontrollerade strukturella och mekaniska egenskaper. Genom att lösa upp cellulosan i ett lämpligt lösningsmedel och att regenerera cellulosan var det möjligt att framställa såväl kapslar som solida sfärer genom att optimera utfällningsförfarandet. Två olika metoder utvecklades för att tillverka ihåliga kapslar: en lösningstelningsmetod som resulterar i millimeterstora, ihåliga kapslar och fasta sfärer, och en emulgeringlösningsmedel-avdunstningsmetod som underlättar bildandet av mikrometerstora vätskefyllda kapslar. En partiell derivatisering av cellulosan till dialkoholcellulosa och cellulosaacetat introducerade molekylär flexibilitet och termoplastiska egenskaper hos cellulosamaterialet. Detta i sin tur resulterade i bildandet av stimuli-känsliga cellulosakapslar med egenskaper som lämpar sig väl för olika industriella tillämpningar, till exempel vid produktion av nya generationers lättviktsmaterial. De våta, ihåliga dialkoholmodifierade cellulosakapslarna visar en volymexpansion till den dubbla volymen när de utsätts för ett minskat yttre tryck, medan de torra vätskefyllda cellulosaacetatkapslarna visar en termisk expansion på upp till 60 gånger sin ursprungliga volym. Bortsett från de kemiska modifieringarna så visar arbetet med de solida cellulosasfärerna att det är möjligt att skapa kompositer mellan regenererad cellulosa och cellulosananokristaller (CNC) för att skapa 100 % cellulosabaserade kompositer.

Avhandlingen inkluderar också modellstudier som var fokuserade på att skapa en bättre förståelse av utvecklingen av den inre strukturen hos regenererade cellulosakulor under torkning från olika lösningsmedel. En kombination av SAXS/WAXS och AFM indentering gjorde det möjligt att identifiera de makro- och mikrostrukturella förändringarna som uppträder inuti de solida sfärerna och för att kontinuerligt kunna utvärdera sfärernas mekaniska egenskaper vid lösningsmedelsavdunstningen. Denna del av arbetet ger en grundläggande förståelse för de mekanismer och molekylära interaktioner som är karakteristiska för processen för torkning av cellulosarika material.

Place, publisher, year, edition, pages
Stockholm: KTH Royal Institute of Technology, 2022. p. 65
Series
TRITA-CBH-FOU ; 2022:19
Keywords
regenerated cellulose, partially modified cellulose, capsules, beads
National Category
Materials Chemistry
Research subject
Fibre and Polymer Science
Identifiers
urn:nbn:se:kth:diva-309739 (URN)978-91-8040-156-2 (ISBN)
Public defence
2022-04-08, F3, Lindstedtsvägen 26, Stockholm, 10:00 (English)
Opponent
Supervisors
Note

QC 20220315

Available from: 2022-03-15 Created: 2022-03-11 Last updated: 2023-04-08Bibliographically approved

Open Access in DiVA

No full text in DiVA

Other links

Publisher's full textScopus

Authority records

Mystek, KatarzynaLi, HailongPettersson, TorbjörnFrancon, HugoSvagan, Anna JustinaLarsson, Per A.Wågberg, Lars

Search in DiVA

By author/editor
Mystek, KatarzynaLi, HailongPettersson, TorbjörnFrancon, HugoSvagan, Anna JustinaLarsson, Per A.Wågberg, Lars
By organisation
Fibre TechnologyFibre- and Polymer TechnologyVinnExcellence Center BiMaC InnovationWallenberg Wood Science Center
In the same journal
Green Chemistry
Other Chemistry Topics

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 274 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf