kth.sePublications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Life cycle assessment of transport systems and transport infrastructure: Investigating methodological approaches and quantifying impacts at project and network levels
KTH, School of Architecture and the Built Environment (ABE), Sustainable development, Environmental science and Engineering, Sustainability Assessment and Management.
2021 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

Reducing greenhouse gas emissions from the transport sector is a key challenge to reach global climate targets and limit global warming to below 2 ºC. The use of life cycle assessment (LCA) may provide knowledge about the environmental impacts of transport systems so that emission reduction measures can be identified.

The aim of this thesis is to investigate how LCA can contribute with knowledge that can be used to support specific decisions in the context of transport system policy and planning, to demonstrate how LCA can be conducted at project and network levels, and to contribute with knowledge of direct and indirect climate impact and primary energy use of the Swedish transport infrastructure and the Swedish transport system at a network level.

The thesis includes four papers that contribute to achieving this aim. Paper 1 demonstrates an approach for the identification of hotspots in Swedish road, rail, air, and sea transport infrastructure at a network level. Paper 2 demonstrates this approach for the full transport system at a network level, including national and international freight transport and passenger travel by road, rail, air, and sea. At the project level, Paper 3 investigates how LCA can be used as decision-support in choice of road corridor, considering prerequisites of data availability and usefulness of results for decision-making. Paper 4 maps approaches used to quantify impacts of the maintenance stage in 92 project-level LCAs of road and rail infrastructure and discusses their applicability in policy and procurement.

Paper 1 estimated that the annual climate impact of Swedish transport infrastructure is about 3 Mtonne CO2 equivalents and that the corresponding primary energy use is about 27 TWh. Road and rail infrastructure contributed to 90% of these impacts. Additional hotspots identified were reinvestment of roads and railways and production of asphalt, concrete, and steel. Paper 2 estimated that the annual climate impact of the Swedish transport system is about 40 Mtonne CO2 equivalents and that the corresponding primary energy use is about 196 TWh. Road transport and aviation together accounted for 85% of these impacts. Indirect impacts were significant, accounting for about a third of the impacts. The main causes of indirect impacts were fuel production for road passenger travel and manufacturing of passenger cars.

Paper 3 found that LCA-based models used in early planning should include generic data that are nation specific (preferably approved by the national road authority) and that can be replaced by project specific data when needed. Further, both traffic and infrastructure should be included at a level of detail that allows the identification of improvement measures and the assessment of uncertainty in the results. Results should be presented relative to a reference alternative and complement results from other decision-support used in planning. Paper 4 found a variety of approaches to quantify impacts of the maintenance stage in LCA. The analysis period was often determined based on the infrastructure’s service life. The maintenance frequency was commonly estimated based on the current practice of maintenance in a region or on performance prediction modelling. Only two of the reviewed papers included the effects of climate change on results of the LCA. How the approaches can be implemented in decision-making depends on their abilities to be standardised for use in procurement and to incorporate multiple scenarios.

Stakeholders involved in transport system policy and planning can use these results as support in considering life cycle impacts in their decision-making practice to reduce environmental impacts in line with national and international targets.

Abstract [sv]

Att minska transportsektorns klimatpåverkan är en viktig utmaning för att nå de globala klimatmålen och begränsa den globala uppvärmningen till under 2 ºC. Att använda livscykelanalys (LCA) kan ge kunskap om transportsystemets miljöpåverkan så att åtgärder för att minska denna kan identifieras.

Syftet med den här avhandlingen är att undersöka hur LCA kan bidra med kunskap som kan användas för att stödja specifika beslut inom policy och planering för transportsystem, visa hur LCA kan genomföras på projekt- och nätverksnivå och att bidra med kunskap om direkt och indirekt klimatpåverkan och energianvändning av svensk transportinfrastruktur och det svenska transportsystemet på nätverksnivå. Avhandlingen innehåller fyra artiklar som bidrar till att uppnå detta syfte.

Artikel 1 beräknar årlig klimatpåverkan och energianvändning av svensk transportinfrastruktur (vägar, järnvägar, flygplatser, hamnar och farleder) på nätverksnivå och identifierar hotspots för detta system. Artikel 2 beräknar årlig klimatpåverkan och energianvändning för hela det svenska transportsystemet (väg, järnväg, luftfart, sjöfart) på nätverksnivå, inklusive persontrafik (inrikes och utrikes) och godstransport (inrikes och import). Artikel 3 undersöker hur LCA kan användas som beslutsstöd vid val av vägkorridor, med tanke på datatillgång och nyttan av resultat för beslutsfattande. Artikel 4 kartlägger tillvägagångssätt som används för att kvantifiera miljöpåverkan av underhåll i 92 LCA:er av väg och järnväg och diskuterar deras tillämpning i policy och upphandling.

Artikel 1 visade att den årliga klimatpåverkan av svensk transportinfrastruktur är cirka 3 Mton koldioxidekvivalenter och att motsvarande energianvändning är cirka 27 TWh. Väg- och järnvägsinfrastruktur bidrog till 90% av detta. Andra hotspots var reinvestering av vägar och järnvägar och produktion av asfalt, betong och stål. Artikel 2 visade att den årliga klimatpåverkan av det svenska transportsystemet är cirka 40 Mton koldioxidekvivalenter och att motsvarande energianvändning är cirka 196 TWh. Vägtransporter och luftfart stod tillsammans för 85% av detta. Indirekt miljöpåverkan bidrog till ungefär en tredjedel av klimatpåverkan och energianvändning. Det var framförallt produktion av bränsle för personbilar och tillverkning av personbilar som bidrog till indirekt miljöpåverkan.

Artikel 3 rekommenderade att LCA-baserade modeller som används i tidig planering bör innehålla generiska data som är nationsspecifika (helst godkända av en nationell transportmyndighet) och som kan ersättas med projektspecifika data vid behov. Vidare bör både trafik och infrastruktur inkluderas på en detaljnivå som möjliggör identifiering av förbättringsåtgärder och bedömning av osäkerhet i resultaten. Resultaten bör presenteras i förhållande till ett referensalternativ och komplettera resultat från annat beslutsstöd som används vid planering. Artikel 4 fann ett flertal tillvägagångssätt för att kvantifiera miljöpåverkan av underhåll. Analysperioden bestämdes ofta baserat på infrastrukturens livslängd. Underhållsfrekvensen uppskattades vanligen baserat på nuvarande praxis för underhåll eller baserat på modellering. Endast två av de granskade artiklarna inkluderade effekter av klimatförändringar på resultaten av LCA:n. Hur dessa tillvägagångssätt kan implementeras i beslutsfattning beror på deras möjligheter att standardiseras för användning i upphandling och att inkludera flera scenarier.

Intressenter som är involverade i policy och planering för transportsystem kan använda dessa resultat som stöd för att inkludera LCA i beslutsfattande för att minska miljöpåverkan i linje med nationella och internationella mål.

Place, publisher, year, edition, pages
Stockholm: KTH Royal Institute of Technology , 2021. , p. 56
Series
TRITA-ABE-DLT ; 219
National Category
Other Natural Sciences
Research subject
Planning and Decision Analysis, Strategies for sustainable development
Identifiers
URN: urn:nbn:se:kth:diva-291521ISBN: 978-91-7873-810-6 (print)OAI: oai:DiVA.org:kth-291521DiVA, id: diva2:1537091
Public defence
2021-04-06, Videolänk - https://kth-se.zoom.us/j/65584448738, Du som saknar dator /datorvana kontakta Anna Björklund anna.bjorklund@abe.kth.se / Use the e-mail address if you need technical assistance, Stockholm, 14:00 (English)
Opponent
Supervisors
Note

QC 20210315

Available from: 2021-03-15 Created: 2021-03-14 Last updated: 2022-06-25Bibliographically approved
List of papers
1. Annual climate impact and primary energy use of Swedish transport infrastructure
Open this publication in new window or tab >>Annual climate impact and primary energy use of Swedish transport infrastructure
2019 (English)In: European Journal of Transport and Infrastructure Research, ISSN 1567-7133, E-ISSN 1567-7141, Vol. 19, no 2, p. 77-+Article in journal (Refereed) Published
Abstract [en]

By 2045, Sweden is to have zero net emissions of greenhouse gases. To reach this goal, stakeholders involved in planning and construction of Swedish transport infrastructure aim to half their climate impact by 2030. Planning for emission reduction measures require network level studies showing environmental impacts of the infrastructure network. Previous studies do not allow assessment of current hotspots in the infrastructure network, which limits their relevance for decision-support in this question. The aim of this paper is to assess the current annual climate impact and primary energy use of Swedish transport infrastructure by using a methodological approach based on life cycle assessment. The scope includes new construction and management (operation, maintenance, and reinvestment) of existing roads, railways, airports, ports, and fairway channels. The annual climate impact was estimated to 2.8 million tonnes carbon dioxide equivalents and the annual primary energy use was estimated to 27 terawatt hours. Mainly road and rail infrastructure contributed to these impacts. Environmental hotspots of the infrastructure network were management of the infrastructure stock (particularly reinvestment of road and rail infrastructure) and material production (particularly production of asphalt, steel, and concrete). If climate targets are to be met, these areas are particularly important to address. Additional research on impacts of small construction measures, the size of biogenic carbon emissions (in standing biomass as well as soil carbon), and the use and impacts of asphalt for road construction and management would further increase the understanding of impacts related to Swedish transport infrastructure at the network level.

Keywords
climate impact, energy use, life cycle assessment, network level, Sweden, transport infrastructure
National Category
Other Environmental Engineering
Identifiers
urn:nbn:se:kth:diva-255372 (URN)10.18757/ejtir.2019.19.2.4378 (DOI)000474896700001 ()2-s2.0-85071697384 (Scopus ID)
Note

Correction in: European Journal of Transport and Infrastructure Research, vol. 20, issue. 2, page. 36 - 40. DOI:10.18757/ejtir.2019.19.2.4378, ScopusID:2-s2.0-85087401525 

QC 20190730

Available from: 2019-07-30 Created: 2019-07-30 Last updated: 2023-12-07Bibliographically approved
2. Direct and indirect climate impact and primary energy use of the Swedish transport system: A consumption-based perspective
Open this publication in new window or tab >>Direct and indirect climate impact and primary energy use of the Swedish transport system: A consumption-based perspective
(English)Manuscript (preprint) (Other academic)
Abstract [en]

Transport is a main contributor to climate change and significant emission reduction measures are required to reach climate targets. This paper identifies hotspots in the Swedish transport system, which is important for the identification of such emission reduction measures. Results complements Swedish official statistics and previous network level studies by applying a methodological approach that allows for the assessment of annual impacts and identification of environmental hotspots. The aim is to estimate the annual direct and indirect climate impact and primary energy use of the Swedish transport system, including national and international passenger travel, domestic freight transport, and import of goods. The scope includes infrastructure, vehicles, and fuels for freight and passenger traffic by road, rail, air, and sea in 2015. The annual climate impact and primary energy use was estimated to be 46 million tonnes CO2 equivalents and 196 TWh, respectively. Vehicle operation – especially road passenger traffic and international aviation – contributed the most to impacts. However, the relative importance of vehicle operation varies for the individual transport modes. Of the indirect aspects, manufacturing and maintenance of road vehicles contributed the most. Results provide a baseline that can be used in scenario analyses of the transport system as well as a basis for reasoning about the total system effects of policy measures and opportunities for Swedish actors to influence impacts of Swedish consumption. Further research involves filling data gaps identified in this paper, and continued development and improvement of data and models.

Keywords
life cycle assessment, climate impact, primary energy use, transport system, consumption, Sweden
National Category
Environmental Sciences
Research subject
Planning and Decision Analysis, Strategies for sustainable development
Identifiers
urn:nbn:se:kth:diva-291519 (URN)
Funder
Swedish Energy Agency
Note

QC 20210315

Available from: 2021-03-14 Created: 2021-03-14 Last updated: 2023-12-07Bibliographically approved
3. Life cycle assessment as decision-support in choice of road corridor: case study and stakeholder perspectives
Open this publication in new window or tab >>Life cycle assessment as decision-support in choice of road corridor: case study and stakeholder perspectives
Show others...
2020 (English)In: International Journal of Sustainable Transportation, ISSN 1556-8318, E-ISSN 1556-8334, p. 1-18Article in journal (Refereed) Published
Abstract [en]

Use of life cycle assessment (LCA) in choice of road corridor could reduce environmental impacts of traffic and infrastructure. This paper explores how the LCA model LICCER, designed to compare life cycle climate impact and energy use of alternative road corridors, fulfills practitioners’ requirements concerning data availability and usefulness for decision-making. Results are based on a case study where the model was applied to a Swedish road reconstruction project and a workshop with potential users of the model. In the case study, the shorter construction alternatives had the lowest traffic related impacts and the highest infrastructure related impacts. Earthworks, soil stabilization, and pavement contributed most to infrastructure related impacts. For the stakeholders, the LICCER model was considered useful because it includes both traffic and infrastructure, includes default data that the user can replace by project specific data, identifies possible improvements, and presents results relative to a reference alternative. However, the model could be improved by including further nation specific default data, different traffic scenarios depending on the road corridor, more detailed traffic scenarios, and an uncertainty assessment of the model output. These findings may be useful in the development and improvement of LCA models and when evaluating the suitability of existing models for use in early planning.

Place, publisher, year, edition, pages
Taylor & Francis, 2020
Keywords
greenhouse gas emissions, infrastructure planning, life cycle assessment, primary energy use, road corridor, stakeholder participation, Asphalt pavements, Climate models, Decision making, Decision support systems, Environmental impact, Soil mechanics, Stabilization, Climate impacts, Data availability, Decision supports, Life Cycle Assessment (LCA), Road reconstruction project, Soil stabilization, Traffic-related, Uncertainty assessment, Life cycle, climate effect, decision support system, energy use, life cycle analysis, road, stakeholder, Sweden
National Category
Environmental Management
Identifiers
urn:nbn:se:kth:diva-284771 (URN)10.1080/15568318.2020.1788679 (DOI)000549047400001 ()2-s2.0-85088117299 (Scopus ID)
Note

QC 20201109

Available from: 2020-11-09 Created: 2020-11-09 Last updated: 2022-06-25Bibliographically approved
4. Including maintenance in life cycle assessment of road and rail infrastructure: A literature review
Open this publication in new window or tab >>Including maintenance in life cycle assessment of road and rail infrastructure: A literature review
(English)Manuscript (preprint) (Other academic)
Abstract [en]

Purpose: LCA is becoming increasingly used for infrastructure policy and planning and there is a need to discuss the practical implication of methodological choices. This paper maps approaches used in comparative LCA of road and rail infrastructure to 1) determine the length of the analysis period, 2) estimate the maintenance frequency, and 3) include the effects of future climate change on infrastructure performance. The applicability of the approaches in policy and procurement is discussed.

Methods: A total of 92 comparative LCAs of road and rail infrastructure published in peer-reviewed journals January 2016–July 2020 were reviewed. Papers were found through a systematic process of searching electronic databases, applying inclusion criteria, and conducting backward and forward snowballing.

Results and discussion: The analysis period was commonly determined based on infrastructure service life. When comparing alternatives that have different service life, a joint analysis period was usually applied. Maintenance frequency was estimated based on current practice, laboratory tests, modelling, and scenarios, both when analysing innovative and conventional solutions. Effects of climate change on environmental impacts of maintenance were considered in two papers. Current practice approaches have limitations in decision-making since they are not adapted to innovative solutions. Modelling and laboratory tests are promising for use in procurement since they can be standardised, however, more research is needed to ensure that they provide a fair comparison of alternatives. Scenarios are generally advisable to use in policy, whereas procurement requires the use of consistent and generic scenarios.

Conclusions: Results of this paper can be used as a basis for systematic evaluation of approaches and for a critical discussion when selecting methodological approach in LCA. Additional research is recommended on how to include the effects of future climate change in LCA and how to utilise modelling and laboratory tests in procurement. Literature not covered here may be reviewed for additional approaches and perspectives.

National Category
Environmental Sciences
Research subject
Planning and Decision Analysis, Strategies for sustainable development
Identifiers
urn:nbn:se:kth:diva-291520 (URN)
Funder
Mistra - The Swedish Foundation for Strategic Environmental Research
Note

QC 20210315

Available from: 2021-03-14 Created: 2021-03-14 Last updated: 2022-06-25Bibliographically approved

Open Access in DiVA

fulltext(936 kB)2525 downloads
File information
File name FULLTEXT01.pdfFile size 936 kBChecksum SHA-512
47849fdf14bed78fcde4356269cbe9ec4c8475c1f884d3a14f1a1a6cfe338c052e6bbe6e90cbffff5631edb1ae9af8fd9261b443fc9aa5866e6d6c86615879d9
Type fulltextMimetype application/pdf

Search in DiVA

By author/editor
Liljenström, Carolina
By organisation
Sustainability Assessment and Management
Other Natural Sciences

Search outside of DiVA

GoogleGoogle Scholar
Total: 2526 downloads
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

isbn
urn-nbn

Altmetric score

isbn
urn-nbn
Total: 2396 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf