kth.sePublications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Experimental Study of Enhanced Active Resonant DC Circuit Breakers
KTH, School of Electrical Engineering and Computer Science (EECS), Electrical Engineering, Electric Power and Energy Systems. (Power Electronics)ORCID iD: 0000-0001-8911-8352
KTH, School of Electrical Engineering and Computer Science (EECS), Electrical Engineering, Electromagnetic Engineering. ABB.ORCID iD: 0000-0002-6375-6142
KTH, School of Electrical Engineering and Computer Science (EECS), Electrical Engineering, Electric Power and Energy Systems. (Power Electronics)ORCID iD: 0000-0002-1755-1365
2022 (English)In: IEEE transactions on power electronics, ISSN 0885-8993, E-ISSN 1941-0107, Vol. 37, no 5, p. 5687-5698Article in journal (Refereed) Published
Abstract [en]

Enhanced active resonant (EAR) dc circuit breakers (DCCBs) are a novel type of DCCB that use a discharge closing switch as interruption medium. A technical limitation of discharge closing switches is the minimum voltage across the main gap required for successful triggering. A novel commutation process creating the minimum voltage internally is proposed, which allows to simplify the EAR DCCB configuration and to reduce its component count. In the prototype, the discharge closing switch is implemented with a TVG. Experiments show that the TVG can be triggered reliably down to a voltage of 50 V and that the discharge in the TVG is highly oscillatory at low current. The originally proposed EAR DCCB configuration has to be tuned such that the commutation to the TVG succeeds at low current. Conversely, the novel commutation process decouples the minimum voltage from the current level by adjusting the triggering delay. This allows reliable commutation irrespective of the operating conditions. It is shown that the novel commutation process does not adversely affect dc interruption. Proactive commutation operation and auto-reclosing strategies are demonstrated.

Place, publisher, year, edition, pages
Institute of Electrical and Electronics Engineers (IEEE), 2022. Vol. 37, no 5, p. 5687-5698
Keywords [en]
DC circuit breakers, DC power systems, Gas discharge devices, HVDC circuit breakers, Spark gaps.
National Category
Other Electrical Engineering, Electronic Engineering, Information Engineering
Research subject
Electrical Engineering
Identifiers
URN: urn:nbn:se:kth:diva-292582DOI: 10.1109/TPEL.2021.3133386ISI: 000745538400072Scopus ID: 2-s2.0-85121343481OAI: oai:DiVA.org:kth-292582DiVA, id: diva2:1542877
Funder
SweGRIDS - Swedish Centre for Smart Grids and Energy Storage, FPS6
Note

QC 20220519

Available from: 2021-04-08 Created: 2021-04-08 Last updated: 2022-06-25Bibliographically approved
In thesis
1. Enhanced Active Resonant DC Circuit Breakers for HVDC Grids
Open this publication in new window or tab >>Enhanced Active Resonant DC Circuit Breakers for HVDC Grids
2021 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

High-voltage DC (HVDC) grids are considered promising for the electricity grid expansion required to integrate renewable energy sources into the existing infrastructure. DC fault currents increase rapidly and lack a current zero crossing. Therefore, HVDC grids require complex DC circuit breakers (DCCBs) capable of interrupting faster than AC circuit breakers to protect against DC faults. Being complex, DCCBs can offer functionality in addition to interruption. Most DCCBs can be categorized as current-injection DCCBs or hybrid DCCBs. Hybrid DCCBs feature more functionality than current-injection DCCBs. Nevertheless, the power semiconductors used in hybrid DCCBs are expensive. The enhanced active resonant (EAR) DCCBs studied in this work are an intermediate solution with the functionality of hybrid DCCBs and the interruption mechanism of current-injection DCCBs. The core of EAR DCCBs are discharge closing switches, which are simple, robust and available for high current and high voltage.

Like all HVDC DCCBs, EAR DCCBs need a fast mechanical switch. A Thomson-coil actuator with active damping is used to open and close the mechanical switch fast. A novel Thomson-coil driver recycling energy during actuation simplifies the Thomson-coil actuator system. Experimental results demonstrate the open-close and open-close-open operation of the Thomson-coil actuator. Extensive experimental studies investigate the DC interruption capability and functionality of a prototype EAR DCCB in a specialized DCCB test circuit. The tests results show that the prototype EAR DCCB can interrupt up to 1.2 kA, abort proactive commutation, and auto-reclose. The studies of the discharge closing switch used find that its minimum voltage is not a serious limitation and that the discharge can become unstable after commutationat low currents. An alternative commutation technique allows EAR DCCBs with less components to operate reliably at all currents.

Abstract [sv]

Högspända likströmsnät (HVDC-nät) anses vara ett lovande alternativ för att möjliggöra integrationen av förnybara energikällor i den existerande elnäts-infrastrukturen. Kortslutningsströmmar i likströmsnät ökar mycket snabbt i storlek och dessutom har dessa strömmaringen nollgenomgång. Därför kräver HVDC-nät komplexa likströmsbrytaresom kan bryta strömmen snabbare än växelströmsbrytare för att skydda mot kortslutningar i nätet. Som ett resultat av ökad komplexitet erbjuder likströmsbrytare utökad funktionalitet. De flesta likströmsbrytare kan kategoriseras antingen som ströminjektionsbrytare eller hybridbrytare. Hybridbrytare erbjuder ytterligare funktionalitet jämfört med ströminjektionsbrytare. Emellertid är kostnaden för effekthalvledarkomponenterna i hybridbrytare hög. En lösning som i olika avseenden är ett mellanting mellan de två nämnda typerna av likströmsbrytare är sk enhanced active resonant (EAR) brytare. Dessa har samma funktion som hybridbrytare, men använder samma brytmekanism som ströminjektionsbrytare. Huvudkomponenten i en EAR-brytare är ett triggat gnistgap, som är enkelt, robust och är tillgängligt för både hög ström och hög spänning.

Som alla likströmsbrytare för HVDC behöver även EAR-brytare en snabb mekanisk switch. En Thomsonspole-aktuator (TCA) med aktiv dämpning används för att snabbt öppna och stänga den mekaniska switchen. Aktiv dämpning är komplex att realisera och måste finjusteras för att TCA:n ska fungera som avsett. En ny TCA-drivare demonstreras. Denna återanvänder energin som krävs för att manövrera TCA:n samtidigt som TCA-systemet kan förenklas. De experimentella resultaten demonstrerar sekvenserna öppna/stänga samt öppna/stänga/-öppna för TCA:n. En omfattande experimentell studie av likströmsbrytning och andra funktioner för EAR-brytaren utförs mha en specialutvecklad testkrets. Testresultaten visar att EAR-brytarprototypen kan bryta strömmar upp till 1200 A, avsluta proaktiv kommutering och återinkoppla. Studierna av det triggade gnistgapet visar att minimispänningen inte är en avsevärd begränsning och att urladdningen kan bli instabil efter kommutering med låg ström. En alternativ kommuteringsmetod möjliggör EAR-brytare med färre komponenter att fungera vid alla strömnivåer.

Place, publisher, year, edition, pages
Stockholm: KTH Royal Institute of Technology, 2021. p. 73
Series
TRITA-EECS-AVL ; 2021:25
Keywords
Active damping, Actuator, DC circuit breakers, DC grid, DC power systems, Fast mechanical switch, Fault handling strategy, Gas discharge devices, HVDC, HVDC circuit breakers, Multilevel converters, Multiterminal HVDC, Power transmission, Spark gaps, Thomson-coil actuator, Vacuum interrupter, Voltage Source Converter (VSC)
National Category
Other Electrical Engineering, Electronic Engineering, Information Engineering
Research subject
Electrical Engineering
Identifiers
urn:nbn:se:kth:diva-293456 (URN)978-91-7873-831-1 (ISBN)
Public defence
2021-05-19, Sten Velander rum 3412, Teknikringen 33, plan 4, Stockholm, 10:00 (English)
Opponent
Supervisors
Funder
SweGRIDS - Swedish Centre for Smart Grids and Energy Storage, FPS6
Note

QC 20210428

Available from: 2021-04-28 Created: 2021-04-27 Last updated: 2022-06-25Bibliographically approved

Open Access in DiVA

fulltext(10154 kB)273 downloads
File information
File name FULLTEXT01.pdfFile size 10154 kBChecksum SHA-512
8133fa780444aee9c0b3a0041893660eb2c4dbad62052cfb6818ff5b41881b5a26a7917a718dbd048c2e2feb15c90ce6a48cb8317030e757705ef2b97edbe914
Type fulltextMimetype application/pdf

Other links

Publisher's full textScopus

Authority records

Augustin, TimBecerra Garcia, MarleyNee, Hans-Peter

Search in DiVA

By author/editor
Augustin, TimBecerra Garcia, MarleyNee, Hans-Peter
By organisation
Electric Power and Energy SystemsElectromagnetic Engineering
In the same journal
IEEE transactions on power electronics
Other Electrical Engineering, Electronic Engineering, Information Engineering

Search outside of DiVA

GoogleGoogle Scholar
Total: 273 downloads
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 436 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf