Open this publication in new window or tab >>2021 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]
High-voltage DC (HVDC) grids are considered promising for the electricity grid expansion required to integrate renewable energy sources into the existing infrastructure. DC fault currents increase rapidly and lack a current zero crossing. Therefore, HVDC grids require complex DC circuit breakers (DCCBs) capable of interrupting faster than AC circuit breakers to protect against DC faults. Being complex, DCCBs can offer functionality in addition to interruption. Most DCCBs can be categorized as current-injection DCCBs or hybrid DCCBs. Hybrid DCCBs feature more functionality than current-injection DCCBs. Nevertheless, the power semiconductors used in hybrid DCCBs are expensive. The enhanced active resonant (EAR) DCCBs studied in this work are an intermediate solution with the functionality of hybrid DCCBs and the interruption mechanism of current-injection DCCBs. The core of EAR DCCBs are discharge closing switches, which are simple, robust and available for high current and high voltage.
Like all HVDC DCCBs, EAR DCCBs need a fast mechanical switch. A Thomson-coil actuator with active damping is used to open and close the mechanical switch fast. A novel Thomson-coil driver recycling energy during actuation simplifies the Thomson-coil actuator system. Experimental results demonstrate the open-close and open-close-open operation of the Thomson-coil actuator. Extensive experimental studies investigate the DC interruption capability and functionality of a prototype EAR DCCB in a specialized DCCB test circuit. The tests results show that the prototype EAR DCCB can interrupt up to 1.2 kA, abort proactive commutation, and auto-reclose. The studies of the discharge closing switch used find that its minimum voltage is not a serious limitation and that the discharge can become unstable after commutationat low currents. An alternative commutation technique allows EAR DCCBs with less components to operate reliably at all currents.
Abstract [sv]
Högspända likströmsnät (HVDC-nät) anses vara ett lovande alternativ för att möjliggöra integrationen av förnybara energikällor i den existerande elnäts-infrastrukturen. Kortslutningsströmmar i likströmsnät ökar mycket snabbt i storlek och dessutom har dessa strömmaringen nollgenomgång. Därför kräver HVDC-nät komplexa likströmsbrytaresom kan bryta strömmen snabbare än växelströmsbrytare för att skydda mot kortslutningar i nätet. Som ett resultat av ökad komplexitet erbjuder likströmsbrytare utökad funktionalitet. De flesta likströmsbrytare kan kategoriseras antingen som ströminjektionsbrytare eller hybridbrytare. Hybridbrytare erbjuder ytterligare funktionalitet jämfört med ströminjektionsbrytare. Emellertid är kostnaden för effekthalvledarkomponenterna i hybridbrytare hög. En lösning som i olika avseenden är ett mellanting mellan de två nämnda typerna av likströmsbrytare är sk enhanced active resonant (EAR) brytare. Dessa har samma funktion som hybridbrytare, men använder samma brytmekanism som ströminjektionsbrytare. Huvudkomponenten i en EAR-brytare är ett triggat gnistgap, som är enkelt, robust och är tillgängligt för både hög ström och hög spänning.
Som alla likströmsbrytare för HVDC behöver även EAR-brytare en snabb mekanisk switch. En Thomsonspole-aktuator (TCA) med aktiv dämpning används för att snabbt öppna och stänga den mekaniska switchen. Aktiv dämpning är komplex att realisera och måste finjusteras för att TCA:n ska fungera som avsett. En ny TCA-drivare demonstreras. Denna återanvänder energin som krävs för att manövrera TCA:n samtidigt som TCA-systemet kan förenklas. De experimentella resultaten demonstrerar sekvenserna öppna/stänga samt öppna/stänga/-öppna för TCA:n. En omfattande experimentell studie av likströmsbrytning och andra funktioner för EAR-brytaren utförs mha en specialutvecklad testkrets. Testresultaten visar att EAR-brytarprototypen kan bryta strömmar upp till 1200 A, avsluta proaktiv kommutering och återinkoppla. Studierna av det triggade gnistgapet visar att minimispänningen inte är en avsevärd begränsning och att urladdningen kan bli instabil efter kommutering med låg ström. En alternativ kommuteringsmetod möjliggör EAR-brytare med färre komponenter att fungera vid alla strömnivåer.
Place, publisher, year, edition, pages
Stockholm: KTH Royal Institute of Technology, 2021. p. 73
Series
TRITA-EECS-AVL ; 2021:25
Keywords
Active damping, Actuator, DC circuit breakers, DC grid, DC power systems, Fast mechanical switch, Fault handling strategy, Gas discharge devices, HVDC, HVDC circuit breakers, Multilevel converters, Multiterminal HVDC, Power transmission, Spark gaps, Thomson-coil actuator, Vacuum interrupter, Voltage Source Converter (VSC)
National Category
Other Electrical Engineering, Electronic Engineering, Information Engineering
Research subject
Electrical Engineering
Identifiers
urn:nbn:se:kth:diva-293456 (URN)978-91-7873-831-1 (ISBN)
Public defence
2021-05-19, Sten Velander rum 3412, Teknikringen 33, plan 4, Stockholm, 10:00 (English)
Opponent
Supervisors
Funder
SweGRIDS - Swedish Centre for Smart Grids and Energy Storage, FPS6
Note
QC 20210428
2021-04-282021-04-272022-06-25Bibliographically approved