kth.sePublications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Integrating Latent Heat Storage into Residential Heating Systems: A study from material and component characterization to system analysis
KTH, School of Industrial Engineering and Management (ITM), Energy Technology, Applied Thermodynamics and Refrigeration.ORCID iD: 0000-0001-8567-7405
2021 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

Latent heat thermal energy storage (LHTES) systems can be coupled with heat pump (HP) systems to realize heat load shifting on demand side. With phase change material (PCM), well designed LHTES components exhibit high storage energy density and thus have large potentials to be integrated in residence where a compact energy storage solution is needed. However, real installations of LHTES-HP integrated systems are still rare nowadays; feasibility of this technology in achieving technically sound and economically viable load shifting operations should be demonstrated and understood by stakeholders to promote its implementation. Therefore, this thesis presents an exemplary feasibility study for three selected off-the-shelf macro-encapsulated PCM products, encompassing in-depth experimental and numerical modelling investigations on three levels—material, component, and system. The feasibility is studied with a specific scenario where the macro-encapsulated LHTES systems are designed to integrate with HP-based heating systems in common Swedish residential buildings. 

On the material level, three commercial PCMs (C48, C58, and ATP60) are selected by the operating temperature levels in typical HP-based space heating systems. Differential Scanning Calorimetry and Temperature-History method are employed to measure PCM enthalpy-temperature profiles; Transient Plane Source method is used to measure the thermal conductivity of ATP60. C58 based on sodium acetate trihydrate is prioritized for in-depth feasibility analyses because of its highest volumetric heat storage capacity.

On the component level, three full-scale macro-encapsulated LHTES components (Component 1: cylindrical encapsulation of C48; Component 2: cylindrical encapsulation of C58; Component 3: ellipsoidal encapsulation of ATP60) are developed for integration in single-family houses to achieve full peak load shifting. A test rig is built for characterizing the three components under possible operational conditions in practical systems. The heat transfer enhancing effects from increasing the temperature difference between heat transfer fluid (HTF) inlet temperature and phase-change temperature as well as from increasing the HTF inlet flowrate are quantified. Performance indicators, such as completion time of charge/discharge, energy storage density, and capacity enhancement factor, are evaluated at different operating temperature ranges. Overall, Component 2 is feasible in delivering around 90% of storage capacity (the capacity loss is due to phase separation). However, storage design and control improvements are still needed for realizing full peak load shifting over a three-hour discharging process. For Component 2, an improved storage solution with a reduced capsule diameter and time-increasing HTF flowrate profiles is developed through numerical simulation using an experimentally-validated two-dimensional heat transfer model. Furthermore, a one-dimensional model is developed and validated for simulating storage thermal output of Components 2 and 3. 

On the system level, a numerical model is developed to calculate electricity input to the LHTES-HP integrated systems for technical, economic, and environmental load shifting evaluation. Three new integration layouts are developed to charge scaled-up Component 2 with a de-superheater and/or a booster heat pump cycle. The new layouts can improve the weekly heating performance factor by 22%–26%, compared with a conventional layout using the condenser for charging. Savings in operational expenses can justify a capital expense of 25,000 Swedish Krona (about 2,500 €) for the LHTES system with a 15-yr operation. Although this justifiable capital expense is lower than the storage component cost alone estimated with the cost of Component 2, it is anticipated that similar LHTES solutions may gain more economic feasibilities with larger peak-valley electricity price differences foreseeable in the future. 

Through presentation of the multi-level feasibility evaluation, this thesis identifies key design and operational issues which might be neglected in single-level investigations. Furthermore, the thesis develops two new LHTES-HP integrated solutions with improved storage design/control strategies and enhanced system coupling methods from the existing solutions. This provides application-oriented insight for design and operation of the load-shift based LHTES installations in residential buildings, potentially contributing to decarbonisation of the increasingly electrified heating sector. 

Abstract [sv]

Latenta värmeenergilagringssystem (eng. LHTES) kan kopplas till värmepumpsystem (eng. HP) för att uppnå en förskjutning av värmebehovet. Med fasförändringsmaterial (eng. PCM) uppvisar väldesignade LHTES-komponenter hög lagringsenergitäthet och har således stora möjligheter att integreras i bostäder där en kompakt lagringslösning efterfrågas. Men installationer av LHTES-HP-integrerade system är fortfarande knappa nuförtiden eftersom att det är nödvändigt att demonstera möjligheten hos denna teknik att uppnå tekniskt och ekonomiskt sund förskjutning av värmelaster samt öka föreståelsen hos intressenter för att främja implementering av tekniken. Således presenterar denna avhandling en studie på implementeringen av tre utvalda och tillgängliga makroinkapslade PCM-produkter. Studien omfattar djupgående undersökningar med experimentella och numeriska modellering på tre nivåer – material-, komponent- och system-nivå. Implementeringen studeras utifrån ett specifikt scenario där de makroinkapslade LHTES-systemen är utformade för att integreras med HP-baserade värmesystem i typiska svenska bostadshus.

På materialsidan väljs tre kommersiella PCM:er (C48, C58 och ATP60) utifrån arbetstemperatursnivån i typiska HP-baserade värmesystem. Metoderna Differential Scanning Calorimetry och Temperature History används för att mäta PCM:ens entalpi-temperaturprofiler; Metoden Transient Plane Source används för att mäta ATP60:s värmeledningsförmåga. C58, som är baserat på natriumacetat trihydrat, prioriteras för noggranna genomförbarhets analyser på grund av sin högsta värmelagringskapacitet.

På komponentnivå utvecklas tre fullskaliga makroinkapslade LHTES-komponenter (Komponent 1: cylindrisk inkapsling av C48; Komponent 2: cylindrisk kapsling av C58; Komponent 3: ellipsoid inkapsling av ATP60) för integrering i enfamiljshus för att uppnå full Peak Load Shifting (förskjutning av värmelasten under toppeffekttimmarna). En testprototyp byggs för att testa dessa tre komponenter under olika driftförhållanden som kan förekomma i typiska värmesystem. Effekten av att öka temperaturskillnaden mellan värmeöverföringsfluidens (eng. HTF) inloppstemperatur och smältpunkt samt att öka HTF-inloppsflödeshastigheten är en ökade värmeöverföring, vilken kvantifieras. Prestandaindikatorer såsom tid för total laddning / urladdning av prototypen, energilagringstäthet och kapacitetsförbättringsfaktor utvärderas vid olika driftstemperaturområden. Sammantaget kan Komponent 2 leverera cirka 90% av lagringskapaciteten (kapacitetsförlusten beror på fasseparation). Dock behövs det fortfarande förbättring i lagringsdesign och styrstrategin för att uppnå total Peak Load Shifting under en 3-timmars urladdningsprocess. För komponent 2 har det utvecklats en förbättrad lagringslösning med reducerad kapseldiameter och tids-ökande HTF-flödesprofiler genom numerisk simulering med en experimentellt validerad tvådimensionell värmeöverföringsmodell. Vidare har det utvecklats en endimensionell modell för att simulera värmelagringskapacitet för Komponent 2 och 3.

På systemnivån har det utvecklats en numerisk modell för att beräkna elektricitetskonsumption hos de LHTES-HP integrerade systemen för teknisk, ekonomisk och miljömässig utvärdering av förskjutning av värmelasterna. Tre nya integrationslayouter har utvecklats för att ladda Komponent 2 med en de-superheater och/eller en booster-värmepumpcykel. De nya layouterna kan förbättra den värmeprestandafaktorn (som beräknas för en vecka) med 22%–26% jämfört med en vanlig layout där kondensorn används för laddning av Komponent 2. Besparingarna i driftskostnaderna kan motivera en kapitalkostnad på 25 k SEK för LHTES-systemet med 15-årig teknisk livslängd. Även om denna motiverade kapitalkostnaden är lägre än kostnaden för enbart LHTES-komponenten under de nuvarande marknadsförhållandena, förväntas sådana LHTES-lösningar bli ekonomiskt genomförbara med större prisskillnader i elpriser i framtida marknaden.

Genom utvärdering av implementeringen på flera nivåer identifierar denna avhandling avgörande design- och driftsproblem som möjligtvis blir försummade i en studie som genomförs på enbart en nivå. Dessutom utvecklar avhandlingen nya LHTES-HP-integrerade lösningar med förbättrade lagringsdesigner, styrstrategier och systemkopplingsmetoder jämfört med befintliga lösningar. Detta ger en applikationsorienterad insikt för design och drift av framtida LHTES-installationer, vilket kan bidra till dekarbonisering av den allt mer elektrifierade uppvärmnings sektorn.

Nyckelord: fasförändringsmaterial, värmeenergilagring, värmepump, lastförskjutning, rymdvärme.

 

Place, publisher, year, edition, pages
Stockholm Sweden: KTH Royal Institute of Technology, 2021. , p. 171
Series
TRITA-ITM-AVL ; 2021:15
Keywords [en]
phase change material, thermal energy storage, heat pump, load shifting, space heating
National Category
Energy Engineering
Research subject
Energy Technology
Identifiers
URN: urn:nbn:se:kth:diva-293768ISBN: 978-91-7873-845-8 (print)OAI: oai:DiVA.org:kth-293768DiVA, id: diva2:1548439
Public defence
2021-05-31, https://kth-se.zoom.us/j/69874578112, Stockholm, 13:00 (English)
Opponent
Supervisors
Available from: 2021-05-04 Created: 2021-04-30 Last updated: 2022-06-25Bibliographically approved
List of papers
1. Experimental investigation on cylindrically macro-encapsulated latent heat storage for space heating applications
Open this publication in new window or tab >>Experimental investigation on cylindrically macro-encapsulated latent heat storage for space heating applications
2019 (English)In: Energy Conversion and Management, ISSN 0196-8904, E-ISSN 1879-2227, Vol. 182, p. 166-177Article in journal (Refereed) Published
Abstract [en]

The integration of latent heat thermal energy storage (LHTES) units with heating systems in buildings is regarded as a promising technology for heating load management; however, so far a limited number of experimental studies have been reported that focus on space heating applications on a representative scale. In this study, we develop and test a 0.38 m3 LHTES unit containing cylindrically macro-encapsulated phase change materials (PCMs) with a melting temperature range of 44–53 °C and with gross mass of 154 kg. The unit has been tested with two tank orientations, horizontal and vertical. In the horizontal orientation tests, parametric studies show that increasing the difference between heat transfer fluid (HTF) supply temperatures and phase-change temperatures of PCMs, as well as increasing HTF flowrates, can both reduce the complete melting/solidification and complete charging/discharging time. Non-linear charging/discharging rates in PCMs are observed. The vertical orientation enables the forming of either a stratified or mixed flow regime in the tank. For charging, the stratified flow provides higher charging rates in PCMs compared to the mixed flow. When discharging the unit with a stratified HTF flow at 35 °C, lower HTF flowrates prolong the discharging time during which the released heat sustains an outlet temperature above 45 °C. Finally, comparisons between horizontal and vertical orientation tests reveal that although the vertical orientation can shorten the charging/discharging time by up to 20% for the entire unit to reach an energy density of 30 kWh/m3, it leads to decrease in PCM thermal capacity by at most 8.2%. The speculated cause of this loss is phase segregation suggested by observed fluid motions in PCM cylinders. This study comprehensively characterizes an LHTES unit providing insights to optimizing its operating strategies considering its coupling with space heating systems.

Place, publisher, year, edition, pages
Elsevier, 2019
National Category
Energy Engineering
Identifiers
urn:nbn:se:kth:diva-241056 (URN)10.1016/j.enconman.2018.12.056 (DOI)000458227700017 ()2-s2.0-85059382278 (Scopus ID)
Funder
Swedish Energy Agency
Note

QC 20190117

Available from: 2019-01-07 Created: 2019-01-07 Last updated: 2025-01-28Bibliographically approved
2. Thermal behavior of a sodium acetate trihydrate-based PCM: T-history and full-scale tests
Open this publication in new window or tab >>Thermal behavior of a sodium acetate trihydrate-based PCM: T-history and full-scale tests
Show others...
2020 (English)In: Applied Energy, ISSN 0306-2619, E-ISSN 1872-9118, Vol. 261, article id 114432Article in journal (Refereed) Published
Abstract [en]

Latent heat thermal energy storage (LHTES) has been receiving increasing attention from researchers and engineers. A practical LHTES installation requires a deep understanding of phase change material’s (PCM’s) thermal behavior under thermal property testing and realistic operating conditions. To enrich this understanding, an experimental study on a commercial sodium acetate trihydrate-based PCM (Climsel C58) is presented in this article. C58 was characterized with two test methods: T-history tests and full-scale LHTES tests. The results are presented and discussed to exhibit the thermal behavior of C58 with these two test methods and the variations between them. With T-history tests, the thermal properties of C58 such as melting/solidification temperature range (57–61 °C/55–50 °C) and latent heat of fusion (216 kJ/kg) were determined. In full-scale LHTES tests, a parametric study was conducted to investigate the effects of heat transfer fluid flowrate and operating temperature range on the thermal performance of a 0.38 m3 storage prototype containing cylindrically macro-encapsulated C58. Moreover, longitudinal and radial PCM temperature distributions in full-scale tests were analyzed, suggesting the presence of phase separation. In general, C58 behaved differently between the two test methods regarding phase separation (negligible in T-history tests), supercooling effects (within 3 K in full-scale but up to 10 K in T-history tests), and thermal energy storage capacity (10% lower in full-scale tests). When using C58 or other salt hydrate-based PCMs for large-scale heat storage, these thermal behavior differences between the property-measurement and the application-oriented environments should be properly addressed in the design stage to ensure performance.

Place, publisher, year, edition, pages
Elsevier, 2020
National Category
Energy Engineering
Identifiers
urn:nbn:se:kth:diva-266689 (URN)10.1016/j.apenergy.2019.114432 (DOI)000515117500089 ()2-s2.0-85077658874 (Scopus ID)
Funder
Swedish Energy Agency
Note

QC 20200122

Available from: 2020-01-16 Created: 2020-01-16 Last updated: 2024-03-18Bibliographically approved
3. Numerical thermal performance investigation of a latent heat storage prototype toward effective use in residential heating systems
Open this publication in new window or tab >>Numerical thermal performance investigation of a latent heat storage prototype toward effective use in residential heating systems
2020 (English)In: Applied Energy, ISSN 0306-2619, E-ISSN 1872-9118, Vol. 278, article id 115631Article in journal (Refereed) Published
Abstract [en]

Latent heat thermal energy storage has been receiving increasing interests in residential heating applications. In this paper, a numerical heat transfer model was built with finite element method for a cylindrically encapsulated latent heat storage prototype and used for investigating its thermal performance optimization measures. The model was validated against four sets of experimental results for both charge and discharge, as the difference in accumulated storage capacity between simulation and experiment is less than 4%. Transient storage inlet boundary conditions were set in simulation for discharge considering the thermal output from the coupled radiators. The results of the optimization analyses show that: 1) reducing the capsule diameter from 69 mm to 15 mm shortens the completion time of charge and discharge by up to 70%, however, at the expense of 23% decrease in total storage capacity; 2) using parabolic or linear time-increasing heat transfer fluid flowrate profiles than a time-constant one extends around twofold the useful discharge timespan; 3) increasing the storage vessel diameter from 0.6 m to 0.7 m and to 0.8 m prolongs the useful discharge timespan from 2 hrs to the recommended 3 hrs, though the further enlargement to 0.8 m results in a lower state of charge after 3 hrs due to increase in unexploited storage capacity. From the numerical optimization study, we proposed a storage design adjustment of using 15 mm-diameter phase change material capsules in a 0.7 m-diameter cylindrical storage vessel, coupled with a parabolic flow strategy, to improve the storage on-peak discharging performance.

Place, publisher, year, edition, pages
Elsevier, 2020
Keywords
Phase change material, Heat transfer simulation, Thermal performance investigation, Residential heating system, Cylindrical encapsulation
National Category
Energy Engineering
Identifiers
urn:nbn:se:kth:diva-278902 (URN)10.1016/j.apenergy.2020.115631 (DOI)000595257500003 ()2-s2.0-85089068664 (Scopus ID)
Funder
Swedish Energy Agency, P40935-1
Note

QC 20200818

Available from: 2020-08-07 Created: 2020-08-07 Last updated: 2022-09-13Bibliographically approved
4. Latent heat storage integration into heat pump based heating systems forenergy-efficient load shifting
Open this publication in new window or tab >>Latent heat storage integration into heat pump based heating systems forenergy-efficient load shifting
2021 (English)In: Energy Conversion and Management, ISSN 0196-8904, E-ISSN 1879-2227, Vol. 236, no 114042Article in journal (Refereed) Published
Abstract [en]

Integrating latent heat thermal energy storage (LHTES) units into building heating systems has been increasinglyinvestigated as a heat load management technology. A conventional LHTES integration method for heat pumpbased heating systems is to connect the heat pump’s condenser for charging the LHTES unit. This integratinglayout however usually leads to increased electricity input to the heating system. To underline this issue andprovide solutions, this paper presents three new LHTES integrating layouts where the LHTES unit is connectedwith the de-superheater of the main heat pump (Case 2), the condenser of a cascaded booster heat pump cycle(Case 3), or a combination of using both the de-superheater and the booster cycle (Case 4). In the context of amulti-family house in Stockholm, a quasi-steady state heating system model was developed to evaluate the newintegrating layouts, which were benchmarked against the baseline heating system without storage (Case 0) andthe conventional integrating layout using the main heat pump condenser (Case 1). Hourly electric power input tothe heating system was modelled for calculating the performance indicators including the heating performancefactor, the operational expense and justifiable capital expense, and the indirect CO2 emissions. Two load shiftingstrategies were simulated for an evaluation period of Week 1, 2019: 1) charge during off-peak hours (8 pm to 6am) and 2) charge during daytime hours (10 am to 7 pm). The simulation results of the off-peak charging strategyshow that, in Cases 2–4, the heating performance factor is 22%-26% higher than Case 1 and the operational expense can be reduced by 2%-5% as compared with Case 0. The savings in the operational expense can justifythe capital expense of 11 k-25 k Swedish Krona (SEK) for the LHTES systems in Cases 2–4 assuming a 15-yearoperation. Furthermore, the advantage of using the daytime charging strategy is principally the mitigation of CO2 emissions, which is up to 14% lower than the off-peak charging strategy. In summary, higher energy efficiencyfor heating is validated in the three new proposed integration layouts (Cases 2–4) against the condensercharging layout.

Keywords
Phase change material, Thermal energy storage, Heat pump, Load shifting, Energy use, Economic analysis, CO2 emissions
National Category
Energy Engineering
Identifiers
urn:nbn:se:kth:diva-293348 (URN)10.1016/j.enconman.2021.114042 (DOI)000647766600004 ()2-s2.0-85103973853 (Scopus ID)
Note

QC 20210521

Available from: 2021-04-22 Created: 2021-04-22 Last updated: 2022-06-25Bibliographically approved
5. Experimental and Numerical Investigation of a Latent Heat Thermal Energy Storage Unit with Ellipsoidal Macro-encapsulation
Open this publication in new window or tab >>Experimental and Numerical Investigation of a Latent Heat Thermal Energy Storage Unit with Ellipsoidal Macro-encapsulation
Show others...
(English)Manuscript (preprint) (Other (popular science, discussion, etc.))
Abstract [en]

Experimental and Numerical Investigation of a Latent Heat Thermal Energy Storage Unit with Ellipsoidal Macro-encapsulationTianhao Xu, Emma Nyholm Humire, Silvia Trevisan, Monika Ignatowicz, Samer Sawalha, Justin NW Chiu*Department of Energy Technology, KTH Royal Institute of Technology, 100 44, Stockholm, SwedenAbstractIn this paper, a novel type of macro-encapsulated phase change material (PCM)shaped in ellipsoidis investigated on a component scale.The encapsulated PCM is a paraffin-based commercial material (ATP60); differential scanning calorimetry and transient plane source method are used to measure the thermo-physical properties of the PCM. A numerical model and a 0.382 m3latent heat thermal energy storage (LHTES) prototype have been built and experimentally characterized. The temperature measurements indicate that thermocline is retainedin the packed bed region. The charge/discharge can be accelerated by65% with20 K increase intemperature difference between the phase-change temperature and heat transfer fluid (HTF)inlet temperature. Increasing HTF inlet flowrate from 0.15 m3/h (Re=77) to 0.5 m3/h (Re=256) shortenscompletion time of charge by51%. Furthermore, a one-dimensional packed bed using source based enthalpy method was constructed and validatedwithin6.6% errorfor aReynolds numberof 90 to 922. Compared with a conventional cylindrical PCM capsule, the ellipsoidal encapsulation shows60% increase in discharge speed but 23%lower storage capacity. This work demonstrates a combined experimental and numerical characterization approach for a novel ellipsoidal PCM encapsulationgeometry. 

National Category
Energy Engineering
Identifiers
urn:nbn:se:kth:diva-293767 (URN)
Note

The manuscript has been submitted to the journal of Energy. On the date when this manuscript is uploaded in Diva (2021-04-30), the manuscript is still under reviewing process.QC 20210506

Available from: 2021-04-30 Created: 2021-04-30 Last updated: 2022-06-25Bibliographically approved

Open Access in DiVA

fulltext(5250 kB)857 downloads
File information
File name FULLTEXT01.pdfFile size 5250 kBChecksum SHA-512
d6606bdf0ac3834002ed5e5adfd0d58abb8e334dfcd394e3ce004a71d919a0d237451b8fc24c583c69e7ca5ee75e02ac31d2256ad56d342909d88c1e31f464c8
Type fulltextMimetype application/pdf

Other links

http://Vid fysisk närvaro eller Du som saknar dator/ datorvana kan kontakta service@itm.kth.se (English)

Authority records

Xu, Tianhao

Search in DiVA

By author/editor
Xu, Tianhao
By organisation
Applied Thermodynamics and Refrigeration
Energy Engineering

Search outside of DiVA

GoogleGoogle Scholar
Total: 861 downloads
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

isbn
urn-nbn

Altmetric score

isbn
urn-nbn
Total: 1413 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf