kth.sePublications KTH
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Towards a Concurrent Multidisciplinary Design Optimization of Mechatronic Systems
KTH, School of Industrial Engineering and Management (ITM), Machine Design (Dept.). KTH Royal Institute of Technology.ORCID iD: 0000-0002-8174-6976
2021 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

Multidisciplinary design optimization of mechatronic systems is a cumbersome task that considers integration of several engineering domains simultaneously. Hence, a holistic method should treat these engineering domains concurrently in the development phase and result in a solution for the system that is optimum considering several disciplines. Conventional design approaches for multi-disciplinary systems often consider each domain separately and integrate them at the end stage of the design. In these methods, the interactions and couplings between parameters from different disciplines can get lost and if any error arises at later design phase, it might lead to back-tracking and debugging, and hence, be time and cost consuming.

Therefore, a method that includes concurrent design of mechanics, electronics, control, considering the impact of embedded control implementation (on physical design and performance) which results in an integrated system is of noteworthy importance. This dissertation summarizes research by the author regarding ideas and suggestions for an integrated multi-criteria design method. The purpose of this research is to enable an early-phase design that takes into account three domains (physical design, control design, and embedded control implementation) simultaneously. Therefore objectives, specifications and constraints from each domain are taken into account. The efficiency feature is enhanced by the use of an early-phase design method which reduces time and cost consuming debugging, and removes the necessity to have iterative design loops in later design phases.

The method develops two types of components: physical and control. Physical components are basic mechanical/electrical elements which include three types of models: physical dimension, static properties, and dynamic behaviour models. Control components include control methods and dynamic performance constraints. The concept of a mechatronic system under design in the supporting software toolbox is configured using the components library. A multi-criteria optimization method is employed in a system level which yields an optimal solution for the system in terms of size, implementation cost, hardware cost and control performance. Using this system level optimization, there is no need to partition the problem or to integrate several optimization loops in the method.

Four design cases are used to enable some features of the software toolbox and investigate capability of the method to handle multi-DOF nonlinear systems; and to highlight correlation between engineering domains and broaden the coverage of disciplines. The feasibility of the method is evaluated by variations of design tests for the design cases. Accordingly, mechanical and control components are studied, developed and integrated into the IDIOM (Integrated Design Optimization of Mechatronic Systems) software toolbox. Since the model of each component is treated separately in the design and modeling stage, any system configuration that uses the available components can be handled by the method. The contribution of the thesis can be summarized as follows:

  • Multidisciplinary design method and investigation of couplings and correlations between engineering domains
  • Models and co-design methods to include nonlinear multi-degree of freedom mechatronic systems
  • Extended method to cover key aspects in discrete time systems, and key factors in embedded control implementation

The goal of this thesis is to improve system development efficiency by integrating engineering domains in an early design phase. Accordingly, the method in this thesis is a fundamental move in evaluation of mechatronic systems design which assists in better system development and analysis. However, there is no single `best' approach for the design of mechatronic systems; the presented method in this thesis facilitates an efficient simultaneous integrated design optimization and has a broader coverage of engineering domains. The results achieved by the method ensure an optimum system solution in regards to the different involved engineering domains.

Abstract [sv]

Multidisciplinär designoptimering av mekatroniska system är en besvärlig uppgift som överväger integration av flera tekniska domäner samtidigt. Därför bör en holistisk metod behandla dessa tekniska domäner samtidigt i utvecklingsfasen och resultera i en lösning för systemet som är optimal med tanke på flera discipliner. Konventionella designmetoder för tvärvetenskapliga system överväger ofta varje domän separat och integrerar dem i slutskedet av designen. I dessa metoder kan interaktioner och kopplingar mellan parametrar från olika discipliner gå vilse och om något fel uppstår vid senare designfas kan det leda till bakspårning och felsökning och kan därför vara tid- och kostnadskrävande.

Därför är en metod som inkluderar samtidig design av mekanik, elektronik, styrning, med tanke på effekterna av inbyggd kontrollimplementering (på fysisk design och prestanda) som resulterar i ett integrerat system av anmärkningsvärd betydelse. Denna avhandling sammanfattar författarens forskning om idéer och förslag på en integrerad designmetod med flera kriterier. Syftet med denna forskning är att möjliggöra en tidig fasdesign som tar hänsyn till tre domäner (fysisk design, kontrolldesign och inbäddad kontrollimplementering) samtidigt. Därför beaktas mål, specifikationer och begränsningar från varje domän. Effektivitetsfunktionen förbättras genom användning av en tidig fasdesignmetod som minskar tid och kostnadskrävande felsökning och tar bort behovet av att ha iterativa designslingor i senare designfaser.

Metoden utvecklar två typer av komponenter: fysisk och kontroll. Fysiska komponenter är grundläggande mekaniska/elektriska element som inkluderar tre typer av modeller: fysisk dimension, statiska egenskaper och dynamiska beteendemodeller. Kontrollkomponenter inkluderar kontrollmetoder och dynamiska prestandabegränsningar. Konceptet med ett mekatroniskt system under konstruktion i den stödjande mjukvaruverktygslådan konfigureras med hjälp av komponentbiblioteket. En multikriterieoptimeringsmetod används på en systemnivå som ger en optimal lösning för systemet när det gäller storlek, implementeringskostnad, hårdvarukostnad och kontrollprestanda. Med denna systemnivåoptimering behöver du inte dela upp problemet eller integrera flera optimeringsslingor i metoden.

Fyra designfall används för att möjliggöra vissa funktioner i mjukvaruverktygslådan och undersöka metodens förmåga att hantera multi-DOF olinjära system; och att lyfta fram sambandet mellan tekniska domäner och bredda täckningen av discipliner. Metodens genomförbarhet utvärderas genom variationer av konstruktionstester för designfallen. Följaktligen studeras, utvecklas och integreras mekaniska komponenter och kontrollkomponenter i verktygslådan IDIOM (Integrated Design Optimization of Mechatronic Systems). Eftersom modellen för varje komponent behandlas separat i konstruktions- och modelleringssteget kan alla systemkonfigurationer som använder de tillgängliga komponenterna hanteras med metoden. Avhandlingens bidrag kan sammanfattas enligt följande:

Tvärvetenskaplig designmetod och undersökning av kopplingar och korrelationer mellan tekniska domänerModeller och samdesignmetoder för att inkludera olinjära mekatroniska system med flera grader av frihetUtökad metod för att täcka viktiga aspekter i diskreta tidssystem och nyckelfaktorer vid implementering av inbäddad kontroll 

Målet med denna avhandling är att förbättra systemutvecklingseffektiviteten genom att integrera tekniska domäner i en tidig designfas. Följaktligen är metoden i denna avhandling ett grundläggande drag i utvärderingen av mekatroniska systemdesign som hjälper till med bättre systemutveckling och analys. Det finns dock ingen enda "bästa" metod för design av mekatroniska system; den presenterade metoden i denna avhandling underlättar en effektiv samtidig integrerad designoptimering och har en bredare täckning av tekniska domäner. De resultat som uppnås med metoden säkerställer en optimal systemlösning när det gäller de olika involverade tekniska domänerna.

Place, publisher, year, edition, pages
Stockholm: KTH Royal Institute of Technology, 2021. , p. 143
Series
TRITA-ITM-AVL ; 2021:11
National Category
Other Mechanical Engineering Control Engineering
Research subject
Machine Design
Identifiers
URN: urn:nbn:se:kth:diva-299841ISBN: 978-91-7873-815-1 (print)OAI: oai:DiVA.org:kth-299841DiVA, id: diva2:1585851
Public defence
2021-09-02, https://kth-se.zoom.us/webinar/register/WN_dElhwgsMTz6vCcAUFAZN1w, Stockholm, 13:00 (English)
Opponent
Supervisors
Available from: 2021-08-18 Created: 2021-08-18 Last updated: 2022-06-25Bibliographically approved
List of papers
1. Multi-Criteria Co-Design optimization of Mechatronic Systems
Open this publication in new window or tab >>Multi-Criteria Co-Design optimization of Mechatronic Systems
2020 (English)In: 2020 IEEE International Conference on Mechatronics and Automation, ICMA 2020, Institute of Electrical and Electronics Engineers (IEEE) , 2020, p. 756-766, article id 9233868Conference paper, Published paper (Refereed)
Abstract [en]

Integrated design optimization of mechatronic systems necessitates a concrete definition of requirements, design parameters and variables, optimization objectives and constraints. A multidisciplinary mechatronic design requires engineers from different domains to work together on the design approach. Different engineering disciplines impose different constraints on the system. To consider the impact of these disciplines and the interactions and coupling between different parameters, there is a need for integrated design method. In this paper, an integrated design optimization approach is presented that takes into account three engineering domains, physical dimensioning, control design and embedded control implementation impact, simultaneously. The optimization problem is a multi-objective method that considers the size of system, sampling frequency and sensor resolution as main objectives. Regarding each objective, there are a few constraints to be satisfied by the final optimum system. The approach is applied to a non-linear mechatronic case including a DC-motor, a timing belt drive and a load. Non-linear dynamics of a timing belt are considered as a new physical component in the method and the system is linearized, controlled and optimized at defined operational points. Sensor resolution and location impact on the optimal system are analysed using a quantization model. It is shown that the approach allows engineering designers to integrate multidisciplinary optimization method to achieve a logical optimal system without degrading the system performance in each domain.

Place, publisher, year, edition, pages
Institute of Electrical and Electronics Engineers (IEEE), 2020
Keywords
control implementation, multidisciplinary design, physical design, sensor quantization
National Category
Aerospace Engineering
Identifiers
urn:nbn:se:kth:diva-291182 (URN)10.1109/ICMA49215.2020.9233868 (DOI)2-s2.0-85096512788 (Scopus ID)
Conference
17th IEEE International Conference on Mechatronics and Automation, ICMA 2020; Beijing; China; 13 October 2020 through 16 October 2020
Note

QC 20210305

Available from: 2021-03-05 Created: 2021-03-05 Last updated: 2023-03-30Bibliographically approved
2. Holistic Multidisciplinary Method for Optimization of Mechatronic Systems
Open this publication in new window or tab >>Holistic Multidisciplinary Method for Optimization of Mechatronic Systems
2021 (English)In: International Journal of Mechatronics and Automation, ISSN 2045-1059, Vol. 8, no 2Article in journal (Refereed) Published
Place, publisher, year, edition, pages
Inderscience Publishers, 2021
National Category
Other Mechanical Engineering
Identifiers
urn:nbn:se:kth:diva-299801 (URN)10.1504/IJMA.2021.115238 (DOI)2-s2.0-85106710408 (Scopus ID)
Note

QC 20220503

Available from: 2021-08-17 Created: 2021-08-17 Last updated: 2022-06-25Bibliographically approved
3. Concurrent and Optimal Structure, Control and Implementation Design
Open this publication in new window or tab >>Concurrent and Optimal Structure, Control and Implementation Design
2020 (English)In: Proceedings of 2020 IEEE 11th International Conference on Mechanical and Intelligent Manufacturing Technologies, ICMIMT 2020, Institute of Electrical and Electronics Engineers (IEEE) , 2020Conference paper, Oral presentation with published abstract (Refereed)
Abstract [en]

Mechatronic system design includes a combination of different engineering disciplines. A common approach in design of mechatronic systems is based on a sequential method, where different disciplines are treated and designed separately. This paper extends earlier work on integrated physical and control design optimization with integrating an additional aspect of the corresponding embedded control system implementation. Our previous publications describe integrated design optimization through a few specific use cases but the impact of embedded control implementation on the structural design of the systems is neglected. In this paper, the approach is extended to cover discussions on control implementation and its effect on the physical dimensioning and vice versa. A multi-objective optimization approach is implemented and tested on a mechatronic system case study consisting of a DC-motor, a planetary gear, a flexible shaft, an embedded controller and a load. The couplings between the properties of different engineering domains are studied and highlighted. The presented approach which is aimed for early phases of design, considers the integration of three engineering disciplines in one design framework which so far has been missing.

Place, publisher, year, edition, pages
Institute of Electrical and Electronics Engineers (IEEE), 2020
National Category
Engineering and Technology
Identifiers
urn:nbn:se:kth:diva-276826 (URN)10.1109/ICMIMT49010.2020.9041181 (DOI)000565046800017 ()2-s2.0-85083229283 (Scopus ID)
Conference
IEEE 11th International Conference on Mechanical and Intelligent Manufacturing Technologies, ICMIMT 2020, Cape Town, 20-22 January 2020
Note

Part of proceedings: ISBN 978-1-7281-5332-2

QC 20200623

Available from: 2020-06-17 Created: 2020-06-17 Last updated: 2022-06-26Bibliographically approved
4. Towards a Formal Framework for Integrated Design-Optimization and Control of Mechatronic Systems
Open this publication in new window or tab >>Towards a Formal Framework for Integrated Design-Optimization and Control of Mechatronic Systems
(English)In: Article in journal (Refereed) Accepted
National Category
Control Engineering Other Mechanical Engineering
Identifiers
urn:nbn:se:kth:diva-299802 (URN)
Note

QC 20210820

Available from: 2021-08-17 Created: 2021-08-17 Last updated: 2022-06-25Bibliographically approved
5. Early phase design-optimization of mechatronic systems
Open this publication in new window or tab >>Early phase design-optimization of mechatronic systems
2017 (English)In: ICCMA 2017 Proceedings of the 2017 The 5th International Conference on Control, Mechatronics and Automation, Association for Computing Machinery (ACM), 2017, p. 42-49Conference paper, Published paper (Refereed)
Abstract [en]

Methodologies on design optimization of mechatronic systems are usually based on consecutive methods, i.e., the procedure of physical design, control and optimization of a system is performed step by step to achieve the final goal. This paper is built upon previous works on developing a toolbox to integrate several engineering backgrounds in early design phase to avoid time and cost consuming iterations in later deign steps. The previous methodology was mainly applicable for linear one-degree of freedom systems without time-variant dynamics. In this paper, the method is upgraded towards covering concepts on nonlinear systems where extra degrees of freedom are added to the system. Additionally, the library of the mentioned toolbox is extended to include ball-screw drive and rotational rigid beam components in terms of physical design, dynamic and static models to examine the feasibility of the design. A conceptual nonlinear multi-degree design case is presented and linearized at specified operational points in the supported software framework and the implemented models are verified in both SimMechanics and Simulink.

Place, publisher, year, edition, pages
Association for Computing Machinery (ACM), 2017
Series
ACM International Conference Proceeding Series
Keywords
Design Optimization, IDIOM Framework, MIMO Systems, Nonlinear dynamics
National Category
Control Engineering
Identifiers
urn:nbn:se:kth:diva-224391 (URN)10.1145/3149827.3149838 (DOI)000843654800008 ()2-s2.0-85041913500 (Scopus ID)9781450353397 (ISBN)
Conference
5th International Conference on Control, Mechatronics and Automation, ICCMA 2017, University of Alberta Edmonton, Canada, 11 October 2017 through 13 October 2017
Note

QC 20201123

Available from: 2018-03-19 Created: 2018-03-19 Last updated: 2022-09-23Bibliographically approved

Open Access in DiVA

PhD thesis_ Fariba Rahimi(2938 kB)799 downloads
File information
File name FULLTEXT01.pdfFile size 2938 kBChecksum SHA-512
124a6a6229468f9f7e94f9334c912242fd19da0303dff180367e2ef99f1b10531c39c10f2d1f8b73fc2bce4834b0612b64821c3025a8e0638c4ec4283a560549
Type fulltextMimetype application/pdf

Other links

http://Vid fysisk närvaro eller Du som saknar dator/ datorvana kan kontakta service@itm.kth.se (English)

Search in DiVA

By author/editor
Rahimi, Fariba
By organisation
Machine Design (Dept.)
Other Mechanical EngineeringControl Engineering

Search outside of DiVA

GoogleGoogle Scholar
Total: 884 downloads
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

isbn
urn-nbn

Altmetric score

isbn
urn-nbn
Total: 685 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf