kth.sePublications KTH
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Co-exposure maximization in online social networks
KTH, School of Electrical Engineering and Computer Science (EECS), Computer Science, Theoretical Computer Science, TCS.ORCID iD: 0000-0002-5976-1993
KTH, School of Electrical Engineering and Computer Science (EECS), Computer Science, Theoretical Computer Science, TCS.ORCID iD: 0000-0002-5211-112X
2020 (English)In: Advances in Neural Information Processing Systems, Neural information processing systems foundation , 2020Conference paper, Published paper (Refereed)
Abstract [en]

Social media has created new ways for citizens to stay informed on societal matters and participate in political discourse. However, with its algorithmically-curated and virally-propagating content, social media has contributed further to the polarization of opinions by reinforcing users’ existing viewpoints. An emerging line of research seeks to understand how content-recommendation algorithms can be re-designed to mitigate societal polarization amplified by social-media interactions. In this paper, we study the problem of allocating seed users to opposing campaigns: by drawing on the equal-time rule of political campaigning on traditional media, our goal is to allocate seed users to campaigners with the aim to maximize the expected number of users who are co-exposed to both campaigns. We show that the problem of maximizing co-exposure is NP-hard and its objective function is neither submodular nor supermodular. However, by exploiting a connection to a submodular function that acts as a lower bound to the objective, we are able to devise a greedy algorithm with provable approximation guarantee. We further provide a scalable instantiation of our approximation algorithm by introducing a novel extension to the notion of random reverse-reachable sets for efficiently estimating the expected co-exposure. We experimentally demonstrate the quality of our proposal on real-world social networks.

Place, publisher, year, edition, pages
Neural information processing systems foundation , 2020.
Keywords [en]
Approximation algorithms, NP-hard, Polarization, Content recommendations, Greedy algorithms, Objective functions, On-line social networks, Political campaigning, Political discourse, Reachable set, Submodular functions, Social networking (online)
National Category
Computer Sciences
Identifiers
URN: urn:nbn:se:kth:diva-301002Scopus ID: 2-s2.0-85108453782OAI: oai:DiVA.org:kth-301002DiVA, id: diva2:1591298
Conference
34th Conference on Neural Information Processing Systems, NeurIPS 2020, 6 December 2020 through 12 December 2020
Note

QC 20210906

Available from: 2021-09-06 Created: 2021-09-06 Last updated: 2025-05-14Bibliographically approved
In thesis
1. Models and Algorithms for Addressing Challenges in Online Social Networks
Open this publication in new window or tab >>Models and Algorithms for Addressing Challenges in Online Social Networks
2025 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

Social network platforms such as Facebook and X (formerly Twitter) facilitate convenient access to news and discussions and enable individuals to express their opinions on societal issues. In recent years, numerous challenges have emerged as social network platforms present significant societal issues, such as increasing political polarization and the circulation of misinformation and disinformation. Malicious actors have exploited these platforms to target vulnerable individuals and manipulate the content they encounter on critical societal matters. Furthermore, algorithmic mechanisms implemented by these platforms, such as information filtering and personalized news feeds, have contributed to the formation of filter bubbles. The filter bubbles restrict individuals’ exposure to diverse perspectives and reinforce existing biases on societal issues. This thesis aims to deepen our understanding of emerging challenges in social network platforms by conceptualizing them as computational problems. We examine the intricate interplay between information flow, human interactions, and algorithmic interventions, selecting and proposing appropriate models to frame these dynamics. We transform complex real-world challenges into computational problems with precise mathematical formulations. We then analyze the complexity of these problems and design approximation algorithms to address them. This thesis comprises six publications and is organized around four research topics. First, we examine the capacity of malicious actors to amplify political polarization and shift individuals’ opinions toward extreme viewpoints. The two associated publications consider scenarios in which malicious actors either influence the opinions of a small subset of individuals or have extensive connections in the network. Second, we propose methods to mitigate filter bubbles by increasing individuals’ exposure to diverse information, achieved either through a viral marketing campaign or by adjusting the exposure of a small subset of individuals. Third, we analyze the impact of viral marketing campaigns on the opinion-formation process, introducing a model that integrates the dynamics of information dissemination with opinion formation. Fourth, we propose the OptiRefine framework for classical problems in social network analysis, such as the max-cut problem and the densest subgraph problem. The framework defines a class of problems for which an initial solution is given. The goal is to identify a new solution that remains close to the original while optimizing predefined objective functions, such as the cut value or the subgraph density. All proposed approaches are rigorously evaluated against multiple baseline algorithms and heuristics in all publications. 

Abstract [sv]

Sociala nätverksplattformar såsom Facebook och X (tidigare Twitter) underlättar bekväm tillgång till nyheter och diskussioner, samt möjliggör för individer att uttrycka sina åsikter i samhällsfrågor. Under de senaste åren har ett flertal utmaningar uppstått då dessa plattformar medför betydande samhällsproblem, såsom ökad politisk polarisering samt spridning av desinformation och missinformation. Illasinnade aktörer har utnyttjat dessa plattformar för att rikta sig mot sårbara individer och manipulera det innehåll de exponeras för i avgörande samhällsfrågor. Därtill har algoritmiska mekanismer som implementerats av plattformarna, såsom informationsfiltrering och personligt anpassade nyhetsflöden, bidragit till skapandet av så kallade filterbubblor. Dessa filterbubblor begränsar individers exponering för olika perspektiv och förstärker redan existerande fördomar i samhällsfrågor.

Denna avhandling syftar till att fördjupa vår förståelse för de framväxande utmaningarna med sociala nätverksplattformar genom att konceptualisera dem som beräkningsmässiga problem. Vi undersöker det intrikata samspelet mellan informationsflöde, mänsklig interaktion och algoritmiska ingripanden, och väljer samt föreslår lämpliga modeller för att rama in dessa dynamiker. Vi omformulerar komplexa verkliga utmaningar till beräkningsproblem med precisa matematiska formuleringar. Därefter analyserar vi problemen ur komplexitetssynpunkt och utvecklar approximationsalgoritmer för att hantera dem.

Avhandlingen består av sex publikationer och är organiserad kring fyra forskningsområden. För det första undersöker vi kapaciteten hos illasinnade aktörer att förstärka politisk polarisering och förskjuta individers åsikter mot extrema ståndpunkter. De två tillhörande publikationerna behandlar scenarier där illasinnade aktörer antingen påverkar åsikterna hos en liten grupp individer eller har omfattande nätverkskopplingar. För det andra föreslår vi metoder för att motverka filterbubblor genom att öka individers exponering för mångsidig information, antingen genom virala marknadsföringskampanjer eller genom att justera exponeringen för ett litet antal individer. För det tredje analyserar vi effekten av virala marknadsföringskampanjer på opinionsbildningsprocessen och introducerar en modell som integrerar dynamiken i informationsspridning med opinionsbildning. För det fjärde presenterar vi ramverket OptiRefine för klassiska problem inom analys av sociala nätverk, såsom max-cut-problemet och det tätaste delgrafsproblemet. Ramverket definierar en klass av problem där en initial lösning ges, och målet är att identifiera en ny lösning som ligger nära den ursprungliga, men som optimerar fördefinierade målfunktioner såsom snittvärde eller delgrafsdensitet. Alla föreslagna metoder har noggrant utvärderats mot flera baslinjealgoritmer och heuristiker i samtliga publikationer.

Place, publisher, year, edition, pages
KTH Royal Institute of Technology, 2025. p. 83
Series
TRITA-EECS-AVL ; 2025:57
National Category
Computer Sciences
Research subject
Computer Science
Identifiers
urn:nbn:se:kth:diva-363348 (URN)978-91-8106-290-8 (ISBN)
Public defence
2025-06-12, https://kth-se.zoom.us/j/68652985718, F3 Flodis, Lindstedtsvägen 26, Stockholm, 14:00 (English)
Opponent
Supervisors
Note

QC 20250514

Available from: 2025-05-14 Created: 2025-05-14 Last updated: 2025-05-14Bibliographically approved

Open Access in DiVA

No full text in DiVA

Scopus

Authority records

Tu, SijingGionis, Aristides

Search in DiVA

By author/editor
Tu, SijingGionis, Aristides
By organisation
Theoretical Computer Science, TCS
Computer Sciences

Search outside of DiVA

GoogleGoogle Scholar

urn-nbn

Altmetric score

urn-nbn
Total: 64 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf