kth.sePublications KTH
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Built Environment Characteristics, Daily Travel, and Biometric Readings: Creation of an Experimental Tool Based on a Smartwatch Platform
KTH, School of Industrial Engineering and Management (ITM), Centres, Integrated Transport Research Lab, ITRL.ORCID iD: 0000-0003-1558-382x
Institute for Transport Studies, Department of Landscape, Spatial, and Infrastructure Sciences, University of Natural Resources and Life Sciences (BOKU).ORCID iD: 0000-0001-7124-7164
KTH, School of Architecture and the Built Environment (ABE), Urban Planning and Environment, Geoinformatics. KTH, School of Industrial Engineering and Management (ITM), Centres, Integrated Transport Research Lab, ITRL.ORCID iD: 0000-0003-1164-8403
KTH, School of Architecture and the Built Environment (ABE), Urban Planning and Environment.ORCID iD: 0000-0002-1046-4293
2021 (English)In: Sustainability, E-ISSN 2071-1050, Vol. 13, no 17, article id 9993Article in journal (Refereed) Published
Abstract [en]

Travel surveys can uncover information regarding travel behaviour, needs, and more. Collected information is utilised to make choices when reorganising or planning built environments. Over the years, methods for conducting travel surveys have changed from interviews and forms to automated travel diaries in order to monitor trips made by travellers. With the fast progression of technological advancements, new possibilities for operationalising such travel diaries can be implemented, changing from utilising mobile to wearable devices. Wearable devices are often equipped with sensors which collect continuous biometric data from sources that are not reachable from standard mobile devices. Data collected through wearable devices range from heart rate and blood pressure to temperature and perspiration. This advancement opens new possible layers of information in the collection of travel data. Such biometric data can be used to derive psychophysiological conditions related to cognitive load, which can uncover in-depth knowledge regarding stress and emotions. This paper aims to explore the possibilities of data analysis on the data collected through a software combining travel survey data, such as position and time, with heartrate, to gain knowledge of the implications of such data. The knowledge about the implications of spatial configurations can be used to create more accessible environments.

Place, publisher, year, edition, pages
Basel, Schweiz: MDPI, 2021. Vol. 13, no 17, article id 9993
Keywords [en]
built environment, position data, biometric data, automated data collection, urban planning, traveller needs, traveller behaviour
National Category
Transport Systems and Logistics Human Computer Interaction Other Engineering and Technologies
Research subject
Transport Science, Transport Systems; Human-computer Interaction; Machine Design
Identifiers
URN: urn:nbn:se:kth:diva-301790DOI: 10.3390/su13179993ISI: 000694469300001Scopus ID: 2-s2.0-85114641387OAI: oai:DiVA.org:kth-301790DiVA, id: diva2:1593621
Funder
EU, Horizon 2020, 769980
Note

QC 20211005

Available from: 2021-09-13 Created: 2021-09-13 Last updated: 2025-08-04Bibliographically approved
In thesis
1. Put your heart into it: What biometrics and behaviour can teach us about road users
Open this publication in new window or tab >>Put your heart into it: What biometrics and behaviour can teach us about road users
2025 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

As the world enters the intelligence age, it is no surprise that it is easier than ever to collect a vast variation of data types, whether it be raw data on human behaviour or processed data on travel patterns, that can be analysed with the help of artificial intelligence and prove to be incredibly valuable. In the domain of transport science, there is a constant quest to make the transport sector safer and more efficient without hindering those travelling from getting to where they need to be, when they need to be there, and data is vital in that quest.

The data collection tools that have become available in the fields of human-computer interaction and human-machine interaction over the past couple of years show great potential in uncovering how road users are affected by the surroundings they travel through or operate in. It is not only possible to meticulously collect how a person is interacting with a vehicle, be it a conventional or a remotely controlled vehicle, but it is also possible to collect biometric data to understand the psychological and physiological effects of the surroundings on the person. Such biometric data mostly stem from brain and heart activity, hence the title of this thesis: Put your heart into it.

This thesis explores how biometric and behavioural data can be collected, which methods should be used for analysis, and how experiments should be designed to optimize the potential of the data sets collected. Through three studies, focusing each on pedestrians, electric scooters, and general driver information searching, this thesis is intended as a first step towards a guide for other subdomains within transport, like psychology and engineering, on how to collect and analyse psychological information through physical data, also called psychophysiology.

The first study focuses on longitudinal studies with low-frequency biometric data collected through smartwatches. Providing cruder results in terms of psychological analysis but proving rather non-intrusive since the participants can turn on and turn off the data collection at their own will.

The second study utilises high-frequency biometric data, collected through chest straps and electrode helmets. The results provide more accurate readings, leading to analyses that provide more in-depth information regarding how a person’s cognitive load and risk perception is affected by their surroundings and their own actions.

The last study compares the biometric and behavioural characteristics of searching for information in both static and dynamic scenarios. Using eye-tracking and head-movement, this study uses simple data analyses to show how important eye-tracking can be when the aim is to understand what a road user is looking at when trying to search for information, whether they are static or moving along a road.

In conclusion, these studies and this thesis have not only proven how useful and efficient these data collection methods can be, but also taken early steps to uncover how to create studies that allow for these data collection methods to be trialled with the aim to understand how road users are affected in the current transport environment.

Abstract [sv]

När världen går in intelligensåldern är det ingen överraskning att det är enklare än någonsin att samla in en så stor variation av datatyper, vare sig det är rådata om mänskligt beteende eller om bearbetade data om resmönster, analyserad med hjälp av artificiell intelligens, kan denna data visa sig vara otroligt värdefull.

De datainsamlingsverktyg som har blivit tillgängliga inom områdena människa-datorinteraktion och människa-maskininteraktion under de senaste åren visar stor potential för att avslöja hur trafikanter påverkas av omgivningen de färdas genom eller verkar i. Det är inte bara möjligt att noggrant samla in hur en person interagerar med ett fordon, vare sig det är ett konventionellt eller ett fjärrstyrt fordon, utan det är också möjligt att förstå psykologisk och fysiologisk effekt av fordonets omgivning på personen. Sådana biometriska data härrör mest från hjärn- och hjärtaktivitet, därav titeln på denna avhandling: Put your heart into it.

Denna avhandling utforskar hur biometrisk och beteendedata kan samlas in, vilka metoder som bör användas för analys och hur experiment bör utformas för att optimera potentialen hos den insamlade datan. Genom tre studier, var och en med fokus på fotgängare, elsparkcyklar och allmän informationssökning för förare, är denna avhandling tänkt som ett första steg mot en guide för andra underdomäner inom transport, som psykologi och teknik, om hur man samlar in och analyserar psykologisk information genom fysiska data, även kallad psykofysiologi.

Den första studien fokuserar på longitudinella studier med lågfrekvent biometriska data insamlad genom smartklockor. Ger grövre resultat i termer av psykologisk analys men visar sig vara ganska icke-påträngande eftersom deltagarna kan slå på och stänga av datainsamlingen efter egen vilja.

Den andra studien använder högfrekvent biometriska data, insamlad genom bröstband och elektrodhjälmar. Resultaten ger mer exakta avläsningar, vilket leder till analyser som ger mer djupgående information om hur en persons kognitiva belastning och riskuppfattning påverkas av omgivningen och deras egna handlingar.

Den sista studien jämför de biometriska och beteendemässiga egenskaperna för att söka information i både statiska och dynamiska scenarier. Med hjälp av blickspårning och huvudrörelser, använder denna studie enkla dataanalyser för att visa hur viktigt blickspårning kan vara när syftet är att förstå vad en trafikant tittar på när de försöker söka information, oavsett om de är statiska eller rör sig längs en väg.

Sammanfattningsvis har dessa studier och denna avhandling inte bara bevisat hur användbara och effektiva dessa datainsamlingsmetoder kan vara, utan också tagit tidiga steg för att avslöja vad som fungerar och vad som inte fungerar när man skapar scenarier för studier med syfte att förstå hur trafikanter påverkas i den nuvarande transportmiljön.

Place, publisher, year, edition, pages
Stockholm: KTH Royal Institute of Technology, 2025. p. 111
Series
TRITA-ITM-AVL ; 2025:13
Keywords
Behavioural data, Biometric data, Sensor fusion, Travel Diaries, Micromobility, Beteende data, Biometrisk data, Sensorfusion, Resedagböcker, Mikromobilitet
National Category
Human Computer Interaction Transport Systems and Logistics Other Engineering and Technologies
Research subject
Machine Design
Identifiers
urn:nbn:se:kth:diva-368105 (URN)978-91-8106-338-7 (ISBN)
Public defence
2025-08-28, F3/https://kth-se.zoom.us/j/62096219683, Lindstedtsvägen 26-28, Stockholm, 10:00 (English)
Opponent
Supervisors
Projects
MERGEN
Funder
Integrated Transport Research Lab (ITRL), F8907TrenOp, Transport Research Environment with Novel Perspectives
Available from: 2025-08-07 Created: 2025-08-04 Last updated: 2025-08-26Bibliographically approved

Open Access in DiVA

Built Environment Characteristics, Daily Travel, and Biometric Readings(12225 kB)195 downloads
File information
File name FULLTEXT01.pdfFile size 12225 kBChecksum SHA-512
e198745b3e10ad96acf32f9cce01c6d817f76c4e25bf3ffdeceebe4ce7788f9d3dcc6a8ec9cfe04ce35c92582393b51994fb5e7e347bc548725d73197ca5cab5
Type fulltextMimetype application/pdf

Other links

Publisher's full textScopus

Authority records

Palmberg, RobinSusilo, YusakGidófalvi, GyőzőNaqavi, Fatemeh

Search in DiVA

By author/editor
Palmberg, RobinSusilo, YusakGidófalvi, GyőzőNaqavi, Fatemeh
By organisation
Integrated Transport Research Lab, ITRLGeoinformaticsUrban Planning and Environment
Transport Systems and LogisticsHuman Computer InteractionOther Engineering and Technologies

Search outside of DiVA

GoogleGoogle Scholar
Total: 195 downloads
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 396 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf