kth.sePublications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Trade-offs and conflicting objectives of decision-making investments in low-carbon technology portfolios for sustainable development: National and continental insights offered by applying energy system models
KTH, School of Industrial Engineering and Management (ITM), Energy Technology. (Energy systems)ORCID iD: 0000-0001-7537-5470
2022 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

Energy infrastructure and appropriate energy policies are crucial for sustainable development and to meet Sustainable Development Goals (SDGs). Limiting global warming potential below 1.5oC would require “rapid and far-reaching” transitions and unprecedented changes in all aspects of society. Several factors influence investment decisions on energy conversion technologies and their specific locations. The choice, timing, and location of energy investments affect the total system cost, socio-economic development, the environment (e.g., emissions, water use), and a nation's energy security. However, existing national energy modelling initiatives only investigate a subset of these pillars for achieving sustainability.

This thesis examines the challenges associated with the energy transition of low-and middle-income countries (Paraguay, Ethiopia, Africa). This work considers national and global policies, focusing on achieving SDG7 and SDG13. The dissertation includes a cover essay and four appended papers. The research conducted in this Thesis examines how energy-systems models can assist in understanding an energy system's complex interactions for sustainable development.

Specifically, the results highlight hydropower and solar PV as key technologies to achieve climate change targets, energy security and energy access goals. Hydropower and other renewable electricity can be exported to bolster energy security for the exporting country, although export revenues are eroded by local demand growth and low export prices. The benefits of low-cost electricity provided by cross-border hydropower should be balanced against energy security concerns for the importing country. The research demonstrates the benefits of regional coordination, with trade enabling renewable resources to be harnessed and the electricity transmitted to demand centres. Although RET decreases carbon dioxide emissions and water use compared to fossil-fuel plants and creates more jobs, they require high up-front capital costs offset by the lower operating fuel costs in the long term. Thus, increasing the ambition of climate targets while achieving electricity access results in lower cumulative costs. Also, although hydropower and renewable technologies build climate resilience, hydropower operation depends on climate variability affecting energy security. Thus, mitigation strategies should consider the associated challenges of climate change in hydropower investments.

Hydropower and renewables are primarily grid-connected technologies, so off-grid and mini-grid systems are key complements to national-grid expansion when pushing for universal energy access. They also impact energy security, total system costs and socio-economic development. 

This Thesis's outcomes can support governments in strategic energy planning to identify future renewable energy projects and ensure their financial viability. Energy systems in their transition need to be affordable, reliable and sustainable (e.g., energy secured, combat climate change) by being climate-resilient. The thesis findings demonstrate that nations need integrated energy planning, accounting for the geospatial characteristics of energy technologies, and water resources management to achieve SDG7 and build climate-resilient (SDG13). A broad portfolio of renewable technologies, interconnectors and a decentralized power generation system providing electricity closer to the end-user demand is needed to enhance energy security, decrease environmental pressures and provide affordable electricity for a nation.

Abstract [sv]

Energiinfrastruktur och lämplig energipolitik är avgörande för att uppnå de globala målen för hållbar utveckling (SDG). Att begränsa den globala uppvärmningen till 1,5 ᵒC kräver "snabba och långtgående" övergångar och förändringar utan motstycke i alla aspekter av samhället. Flera faktorer påverkar investeringsbeslut och val av plats för olika energiomvandlingsteknologier. Energiinvesteringar, deras tidpunkt och plats påverkar den totala systemkostnaden, socioekonomisk utveckling, miljön (t.ex. utsläpp, vattenanvändning) och en nations energisäkerhet. Befintliga nationella initiativ för energimodellering undersöker dock bara en delmängd av dessa aspekter.Denna avhandling undersöker utmaningarna i samband med energiomställningen i låg- och medelinkomstländer (mer specifikt Paraguay, Etiopien och övriga länder i Afrika). Detta arbete tar hänsyn till nationell och global policy, med fokus på att uppnå SDG7 och SDG13. Avhandlingen innehåller en omslagsuppsats och fyra bifogade artiklar. Forskningen i denna avhandling undersöker hur energisystemmodeller kan hjälpa till för att öka förståelsen av ett energisystems komplexa interaktioner för hållbar utveckling.

Specifikt lyfter resultaten fram vattenkraft och solenergi som nyckelteknologier för att uppnå målen gällande klimatförändringar, energisäkerhet och energitillgång. Vattenkraft och annan förnybar el kan exporteras för att stärka energitryggheten för exportlandet, även i fallen då exportintäkterna urholkas av lokal efterfrågetillväxt och låga exportpriser. Fördelarna med lågprisel från gränsöverskridande ledningar bör vägas mot energisäkerhetsproblem för importlandet. Forskningen visar fördelarna med regional samordning, handel som möjliggör att förnybara resurser kan utnyttjas och elen överföras till områden med hög efterfrågan av energi. Även om förnybar teknologi kräver höga initiala investeringar, minskar de koldioxidutsläppen och vattenanvändningen jämfört med fossilbränsleanläggningar, samt skapar fler jobbtillfällen och har lägre bränslekostnader. Att höja ambitionen med klimatmål samtidigt som man uppnår eltillgång resulterar således i lägre kumulativa kostnader. Även om vattenkraft och annan förnybar teknik bygger klimattålighet, påverkas vattenkraftdriften på klimatförändringar som påverkar energisäkerheten. Därför bör klimatåtaganden ta vattenkraften i beaktande.

Vattenkraft och förnybar energi är i första hand nätanslutna tekniker, därmed är lokala elnät viktiga komplement till nationell nätexpansion när man strävar mot universell tillgång till energi. De påverkar också energisäkerhet, totala systemkostnader och socioekonomisk utveckling.

Resultaten av denna avhandling kan stödja regeringar i strategisk energiplanering för att identifiera framtida projekt för förnybar energi och säkerställa deras ekonomiska bärkraft. Energisystem i sin övergång måste vara ekonomiskt överkomliga, tillförlitliga och moderna (t.ex. energisäkrade, bekämpa klimatförändringar) genom att vara klimattåliga. Resultaten av denna avhandling visar att nationer behöver integrerad energiplanering med hänsyn till olika teknologiers geospatiala egenskaper och vattenanvändning för att uppnå SDG7 och bygga klimattåligt (SDG13). En bred portfölj av förnybar teknik, och ett decentraliserat kraftgenereringssystem som tillhandahåller elektricitet närmare slutanvändarna behövs för att öka energisäkerheten, minska miljötrycket och tillhandahålla elektricitet till överkomligt pris.

Place, publisher, year, edition, pages
Stockholm: KTH Royal Institute of Technology, 2022. , p. 129
Series
TRITA-ITM-AVL ; 2022:21
Keywords [en]
sustainable development, energy systems analysis, modelling tools, energy policy, energy resources management, techno-economic analysis, low-carbon technology portfolios, energy access, OSeMOSYS, Paraguay, Ethiopia, Africa
Keywords [sv]
hållbar utveckling, energisystemanalys, modelleringsverktyg, energipolitik, energiresursförvaltning, teknisk-ekonomisk analys, energiteknologiportföljer, tillgång till energi, OSeMOSYS, Paraguay, Ethiopia, Africa
National Category
Energy Systems Energy Engineering Environmental Management
Research subject
Energy Technology
Identifiers
URN: urn:nbn:se:kth:diva-312103ISBN: 978-91-8040-278-1 (print)OAI: oai:DiVA.org:kth-312103DiVA, id: diva2:1657773
Public defence
2022-06-14, Kollegiesalen / https://kth-se.zoom.us/j/62673712649, Brinellvägen 8, Stockholm, 14:00 (English)
Opponent
Supervisors
Available from: 2022-05-19 Created: 2022-05-12 Last updated: 2025-02-10Bibliographically approved
List of papers
1. Implications to the electricity system of Paraguay of different demand scenarios and export prices to Brazil
Open this publication in new window or tab >>Implications to the electricity system of Paraguay of different demand scenarios and export prices to Brazil
Show others...
2021 (English)In: Energy Systems, Springer Verlag, ISSN 1868-3967, E-ISSN 1868-3975, Vol. 12, no 4, p. 911-939Article in journal (Refereed) Published
Abstract [en]

Paraguay's power system is based entirely on hydropower. It serves as the largest net electricity exporter in Latin America. Nonetheless, the country´s electricity consumption per capita is one of the lowest in the world and the transmission and distribution network has one of the highest losses in Latin America. This paper presents an electricity expansion investment outlook (2018–2040) for Paraguay using OSeMOSYS, analyzing three electricity demand scenarios under different electricity export prices to Brazil. The study identifies the least-cost power generation mix, future investments and the financial requirements to meet the needs of different demand scenarios. We find that Paraguay will need to invest in hydropower plants, by mainly expanding the capacity of Yacyreta to cover its electricity needs and sustain national electricity exports levels. In the High demand scenario, where the electricity demand could approximately double by 2040, the country's overall electricity exports decrease by 50% compared to the Reference scenario. Based on the different scenarios examined, the government spends approximately 18.3–31.2 billion USD on power plant investments for the period 2018–2040 to cover future electricity demand. The findings could be useful in supporting decision-making concerning socio-economic development pathways in the country.

Place, publisher, year, edition, pages
Springer Nature, 2021
Keywords
Cost-optimization, Demand scenarios, Energy planning, Investment outlook, OSeMOSYS, Project finance, Decision making, Economics, Electric power utilization, Hydroelectric power, Hydroelectric power plants, Investments, Electricity demands, Electricity exporters, Electricity-consumption, Financial requirements, Power generation mix, Power plant investment, Socio-economic development, Transmission and distribution, Costs
National Category
Energy Systems
Identifiers
urn:nbn:se:kth:diva-304452 (URN)10.1007/s12667-020-00420-w (DOI)000607020700003 ()2-s2.0-85099302574 (Scopus ID)
Note

QC 20250327

Available from: 2021-11-08 Created: 2021-11-08 Last updated: 2025-03-27Bibliographically approved
2. Influence of Electrification Pathways in the Electricity Sector of Ethiopia-Policy Implications Linking Spatial Electrification Analysis and Medium to Long-Term Energy Planning
Open this publication in new window or tab >>Influence of Electrification Pathways in the Electricity Sector of Ethiopia-Policy Implications Linking Spatial Electrification Analysis and Medium to Long-Term Energy Planning
Show others...
2021 (English)In: Energies, E-ISSN 1996-1073, Vol. 14, no 4, article id 1209Article in journal (Refereed) Published
Abstract [en]

Ethiopia is a low-income country, with low electricity access (45%) and an inefficient power transmission network. The government aims to achieve universal access and become an electricity exporter in the region by 2025. This study provides an invaluable perspective on different aspects of Ethiopia's energy transition, focusing on achieving universal access and covering the country's electricity needs during 2015-2065. We co-developed and investigated three scenarios to examine the policy and technology levels available to the government to meet their national priorities. To conduct this analysis, we soft-linked OnSSET, a modelling tool used for geospatial analysis, with OSeMOSYS, a cost-optimization modelling tool used for medium to long-run energy planning. Our results show that the country needs to diversify its power generation system to achieve universal access and cover its future electricity needs by increasing its overall carbon dioxide emissions and fully exploit hydropower. With the aim of achieving universal access by 2025, the newly electrified population is supplied primarily by the grid (65%), followed by stand-alone (32%) technologies. Similarly, until 2065, most of the electrified people by 2025 will continue to be grid-connected (99%). The country's exports will increase to 17 TWh by 2065, up from 832 GWh in 2015, leading to a cumulative rise in electricity export revenues of 184 billion USD.

Place, publisher, year, edition, pages
MDPI, 2021
Keywords
energy planning, electricity demand scenarios, on-grid and off-grid technologies, OSeMOSYS, OnSSET, SDG7
National Category
Energy Systems
Identifiers
urn:nbn:se:kth:diva-292263 (URN)10.3390/en14041209 (DOI)000623480900001 ()2-s2.0-85106438933 (Scopus ID)
Note

QC 20210401

Available from: 2021-04-01 Created: 2021-04-01 Last updated: 2023-08-28Bibliographically approved
3. The effects of climate change mitigation strategies on the energy system of Africa and its associated water footprint
Open this publication in new window or tab >>The effects of climate change mitigation strategies on the energy system of Africa and its associated water footprint
Show others...
2022 (English)In: Environmental Research Letters, E-ISSN 1748-9326, Vol. 17, no 4, article id 044048Article in journal (Refereed) Published
Abstract [en]

Africa's economic and population growth prospects are likely to increase energy and water demands. This quantitative study shows that energy decarbonisation pathways reduce water withdrawals (WWs) and water consumption (WC) relative to the baseline scenario. However, the more aggressive decarbonisation pathway (1.5 degrees C) leads to higher overall WWs than the 2.0 degrees C scenario but lower WC levels by 2065. By 2065, investments in low-carbon energy infrastructure increase annual WWs from 1% (52 bcm) in the 2.0 degrees C to 2% (85 bcm) in the 1.5 degrees C scenarios of total renewable water resources in Africa compared to 3% (159 bcm) in the baseline scenario with lower final energy demands in the mitigation scenarios. WC decreases from 1.2 bcm in the 2.0 degrees C to 1 bcm in the 1.5 degrees C scenario, compared to 2.2 bcm in the baseline scenario by 2065, due to the lower water intensity of the low-carbon energy systems. To meet the 1.5 degrees C pathway, the energy sector requires a higher WW than the 2.0 degrees C scenario, both in total and per unit of final energy. Overall, these findings demonstrate the crucial role of integrated water-energy planning, and the need for joined-up carbon policy and water resources management for the continent to achieve climate-compatible growth.

Place, publisher, year, edition, pages
IOP Publishing, 2022
Keywords
energy modelling, integrated energy planning, water resources management, Africa, energy policy, OSeMOSYS
National Category
Energy Engineering
Identifiers
urn:nbn:se:kth:diva-311046 (URN)10.1088/1748-9326/ac5ede (DOI)000774496400001 ()2-s2.0-85128194126 (Scopus ID)
Note

QC 20220420

Available from: 2022-04-20 Created: 2022-04-20 Last updated: 2024-03-18Bibliographically approved
4. Strategic low-cost energy investment opportunities and challenges towards achieving universal electricity access (SDG7) in forty-eight African nations
Open this publication in new window or tab >>Strategic low-cost energy investment opportunities and challenges towards achieving universal electricity access (SDG7) in forty-eight African nations
2022 (English)In: Environmental Research: Infrastructure and Sustainability, ISSN 2634-4505Article in journal (Refereed) Accepted
Abstract [en]

Strategic energy planning to achieve universal electricity access and meet the future energy needs of African nations is essential to formulate effective policy measures for climate change mitigation and adaptation. Africa can not afford a cost-prohibiting green energy transition to achieve United Nations Sustainable Development Goal 7. In this study, I employ open-access energy models, enhanced with geospatial data, to identify least-cost power generation investment options for forty-eight African nations. Different levels of electricity consumption per capita and costs of renewables are considered across four scenarios. According to the analysis, to achieve universal electricity access by 2030 in Africa, the power generation capacity needs to increase between 211GW-302GW, depending on electricity consumption levels and the cost of renewables considered, leading electricity generation to rise between 6,221PJ- 7,527PJ by 2030. Higher electricity generation levels lead to higher penetration of fossil fuel technologies in the power mix of Africa. Natural gas will be the dominant fossil fuel source by 2030, while the decreasing costs of renewables will lead solar to overtake hydropower. To meet the same electricity demand levels, decreasing the cost of renewables can enable a less carbon-intensive power system, although higher capacity is also needed. However, Africa is still hard to achieve its green revolution. Depending on electricity consumption levels and costs of renewables considered, grid-connected technologies are estimated to supply 85%-90% of total electricity generated in Africa in 2030, mini-grid technologies 1%-6%, and stand-alone technologies 8%-11%. Off-grid solar and hybrid mini-grid solar technologies are essential in electrifying residential areas. Higher penetration of renewable energy sources in the energy mix creates local jobs and increases cost-efficiency. The analysis demonstrates that 6.9 million to 9.6 million direct jobs, depending on the policies and renewable development levels, can be created in Africa by expanding the power sector from 2020 to 2030 across the supply chain. While increasing electricity consumption levels in Africa leads to higher total system costs, it is also estimated to create more jobs, fostering political and societal stability. Finally, the decreasing costs of renewables could further increase the penetration of renewables in the energy mix, leading to an even higher number of jobs.

Place, publisher, year, edition, pages
United Kingdom: Research Square Platform LLC, 2022
Keywords
SDG7, energy access, energy system analysis, Africa, OSeMOSYS, GEP
National Category
Energy Systems Environmental Management Energy Engineering
Identifiers
urn:nbn:se:kth:diva-312105 (URN)10.1088/2634-4505/ac7900 (DOI)2-s2.0-85144256730 (Scopus ID)
Note

QC 20220629

Available from: 2022-05-10 Created: 2022-05-10 Last updated: 2025-02-10Bibliographically approved

Open Access in DiVA

Pappis_Kappa(3315 kB)813 downloads
File information
File name FULLTEXT01.pdfFile size 3315 kBChecksum SHA-512
eaa40667c740b73e89b7adfcb31daa1487f443ba38bc6a5d48065ab7d9fc2495fedf8e2614d9ea7f20655e8ece98a475548abe35ead770c17a76ef251af10ac0
Type fulltextMimetype application/pdf

Other links

http://Vid fysisk närvaro eller Du som saknar dator/ datorvana kan kontakta service@itm.kth.se (English)

Search in DiVA

By author/editor
PAPPIS, IOANNIS
By organisation
Energy Technology
Energy SystemsEnergy EngineeringEnvironmental Management

Search outside of DiVA

GoogleGoogle Scholar
Total: 818 downloads
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

isbn
urn-nbn

Altmetric score

isbn
urn-nbn
Total: 1262 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf