kth.sePublications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Leveraging HVPE for III-V/Si Integration and Mid-Infrared Photonic Device Fabrication
KTH, School of Engineering Sciences (SCI), Applied Physics, Photonics. (HMA)ORCID iD: 0000-0002-6398-2342
2022 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

This work covers the implementation of highly specialized epitaxial techniques enabled by the near-equilibrium hydride vapor-phase epitaxy growth process in III-V/Si integration for Si-based tandem solar cells and photoelectrochemical reactions, quasi phase matching GaP structures on GaAs substrates, and regrowth of InP:Fe on quantum cascade lasing structures.

III-V/Si integration is an important topic in several fields of research with a significant one being solar energy harvesting. Combining the economic benefits of Si with the advantageous and flexible optical and electronic properties of III-V’s represents significant improvements in both photovoltaic and photoelectrochemical applications. GaAsP is a promising candidate for Si-based tandem solar cells, but it has seen much less research compared to other III-V compounds. Establishing a cost-efficient method for integrating GaAsP on Si could pave the way for significant improvements in photovoltaics. However, there are many technological challenges with this integration, some of which are addressed in this work using advanced epitaxial techniques. A fabrication process for full 2” wafer GaAsP/Si templates is developed. This is based on the epitaxial lateral overgrowth technique to reduce misfit dislocations, which utilizes the inherent selectivity and high growth rate of hydride vapor phase epitaxy. Extensive work is also done to establish control of the crystalline quality and composition of planar and laterally grown GaAsP on both GaAs and Si. Planar GaAsP/Si solar cell structures are grown based on the optimization work, and a process for fabricating devices out of these is developed. Work on III-V/Si integration is also done towards photoelectrochemical applications; p-GaP is grown on Si by direct heteroepitaxy, which requires a specialized technique called vapor mixing epitaxy. This utilizes a specialized precursor injection scheme in order to allow the growth to take place at a much lower temperature than during conventional growth. Both GaAs and GaP are grown directly on Si using the low-temperature process, investigating the impact of substrate orientation and temperature, before a more extensive investigation is carried out for Zn-doped p-type GaP on Si. The p-GaP/Si growth is also used along with p-GaP/GaAs and p-GaP/GaP reference samples to perform hydrogen evolution and CO2 reduction reactions. Selective area growth of GaP and GaAs directly on SiO2/Si templates using the low-temperature process is also demonstrated.

Despite the many applications in communication and security, there are relatively few direct sources of coherent radiation in the mid-infrared and terahertz spectral ranges. One method of accessing these frequencies is the down-conversion of more well-established sources using non-linear optical processes. Quasi phase matched semiconductor structures are a promising pathway for this, and orientation-patterned GaP/GaAs has been identified as one of the top candidates. However, the fabrication of these structures puts high demands on the epitaxial processes used, which are investigated in this work. Additionally, wafer-bonded GaAs templates have seen less previous research than templates fabricated using molecular beam epitaxy. A homoepitaxial selective area growth study of GaP is performed as a pre-study to investigate how the growth-rate anisotropy can be controlled using the growth conditions. Subsequently, two methods for maintaining vertical domain boundaries during heteroepitaxy of orientation patterned GaP on wafer bonded GaAs templates are established. One method is to use two sets of growth conditions where the first set forms tilted facets on the top of both domains, followed by a second set of conditions with higher growth rate. The second method is to suppress the formation of misfit dislocations by increasing the GaCl flow, which reduces the lateral growth rate enhancement caused by such defects. The impact of GaCl flow on misfit dislocation formation is studied in more detail, confirming the effectiveness of this approach. Initial results of an on-going investigation are also presented, where growth on different types of GaAs templates are studied using temporally resolved growth, showing the evolution of the growth profile.

Another source for coherent mid-infrared and terahertz radiation that has seen extensive research and development is the quantum cascade laser, which utilizes inter-subband transitions in carefully engineered semiconductor multi-quantum well structures. This approach offers both high output power and wide frequency tunability, but inherently generates more heat compared to typical inter-band lasing transitions. This is most often addressed by employing buried heterostructures that maximizes the thermal conduction away from the lasing region. The regrowth of InP:Fe on InGaAs/AlGaAs structures has been demonstrated to be very effective, despite the unconventional geometric requirements put on the epitaxial process. In this work, InP:Fe regrowth on a novel hexagonally close-packed photonic crystal structure is studied. This structure is designed to enable power scaling of terahertz radiation emission while maintaining a single optical mode. The impact on thermal management is investigated by thermal dissipation simulations using a finite element method. It is found that, as also seen on well-established ridge structures, the thermal dissipation is greatly enhanced by the regrowth of InP:Fe compared to other structural materials with poorer thermal properties. Regrowth of InP:Fe on a photonic crystal quantum cascade laser sample is presented, utilizing the high growth rate anisotropy inherent to hydride vapor phase epitaxy to achieve full planarization around the 12 µm tall structure in 13 min of growth. Additionally, regrowth is also performed on a more conventional ridge-style laser structure, utilizing a tapered design to increase confinement and increase output power. While tapered designs have been investigated previously, this utilizes a novel design that emits from the tapered end of the ridge in order to mitigate heating effects. The L-I-V characteristics and beam stability of these structures were analyzed during room-temperature quasi-continuous lasing, achieving 1.4 watt peak output power. 

This work covers a number of advanced epitaxial methods and their usage for applications in different fields based on leveraging the strengths or mitigating the drawbacks of hydride vapor phase epitaxy. The economic benefits of the technique in combination with the unique solutions provided by its key features demonstrates potential for several applications based on III-V/Si integration and mid-infrared radiation generation.

Abstract [sv]

Den här avhandlingen beskriver avancerade epitaxiella tekniker med hydridbaserad ångfasepitaxi: en tillväxtprocess som tar plats nära kemisk jämvikt. Teknikerna användes för integrering av III-V/Si – integrering för kiselbaserade tandemsolceller och fotoelektrokemiska reaktioner, odling av kvasifasmatchade GaP-strukturer på GaAs och återodling av InP:Fe på kvantkaskadlasrande strukturer.

Integrering av III-V – material på kisel är ett viktigt ämne inom flera fält, däribland utnyttjande av solenergi. Kombinationen av de ekonomiska fördelarna hos kisel med de fördelaktiga och flexibla optoelektroniska egenskaperna hos III-V – material representerar avsevärda framsteg för applikationer inom både solcellsteknik och fotoelektrokemi. GaAsP är en bra kandidat för kiselbaserade tandemsolceller, men har inte undersökts lika utförligt som andra III-V material. Genom att etablera en kostnadseffektiv integrationsteknik för GaAsP på kisel skulle viktiga framsteg inom solcellsteknik möjliggöras. Däremot finns det många stora teknologiska utmaningar för sådan integration, några av vilka adresseras i det här arbetet genom implementering av specialiserade epitaxiella tekniker. En tillverkningsprocess för 2” – skivor av GaAsP/Si har utvecklats. Den baseras på lateral epitaxiell täckning för att filtrera bort gittermissmatchdislokationer, vilket utnyttjar den karaktäristiska selektiviteten och höga tillväxthastigheten hos hydridbaserad ångfasepitaxi. Metoder för att kontrollera sammansättningen och kristallkvalitén hos både vertikalt och lateralt odlad GaAsP/Si och GaAsP/GaAs har också undersökts utförligt. Solcellsstrukturer har odlats baserat på undersökningen och ett processflöde för att tillverka solceller has designats och etablerats. III-V/Si integration har också undersökts för fotoelektrokemiska applikationer där p-GaP har odlats direkt på kisel. Detta kräver en specialiserad teknik, kallad för ångblandningsepitaxi, där gasinjiceringen är specialanpassad för att låta odlingen ta plats vid mycket lägre temperatur än vid konventionell odling. Både GaAs och GaP odlades på kisel med denna teknik där substratorienteringens och temperaturens inverkan undersöktes, följt av en mer utförlig studie av p-GaP/Si. p-GaP/Si och p-GaP/GaAs prover användes också för solljusdriven vattenspjälkning och koldioxidreduktion. Slutligen demonstrerades även ytselektiv epitaxi av GaAs och GaP direkt på mönstrade SiO2/Si substrat via ångblandningsepitaxi.

Trots flertalet användningsområden inom kommunikation och säkerhet finns det relativt få direkta källor för mid-infraröd- och terahertzstrålning. Ett sätt att nå dessa våglängder är genom att nedkonvertera mer väletablerade källor via ickelinjära optiska processer. Kvasifasmatchande halvledarstrukturer har visat sig vara en effektiv strategi för de ändamålen, där riktningsstrukturerade GaP/GaAs-strukturer har identifierats som en av de bästa kandidaterna. Tillverkningen av dessa strukturer ställer stora krav på de epitaxiella processerna som används och dessa har undersökts i detta arbete. En förstudie av ytselektiv homoepitaxi av GaP utfördes för att undersöka hur kontroll över tillväxtanisotropi kan uppnås med hjälp av odlingsparametrar. Därefter etablerades två metoder för att upprätthålla räta domängränser under odling riktningsstrukturerad GaP/GaAs. En metod är att använda två separata uppsättningar av odlingsparametrar för att först forma sneda facetter på domäntopparna som upprätthåller domängränsernas räthet, följt av andra odlingsparametrar med högre tillväxthastighet. Den andra metoden är att förhindra bildandet av snedgående dislokationer genom att öka GaCl-flödet under odling, vilket minskar den laterala tillväxten som sådana dislokationer orsakar. En ytterligare undersökning om GaCl-flödets inverkan på dislokationsbildning utfördes också för att bekräfta metoden. Tidiga resultat från en pågående studie presenteras också, där tidsupplöst odling på olika typer av riktningsstrukturerade GaAs-substrat utförs för att visa hur domängränsprofilen ändras under odling.

 En annan väl utforskad källa till koherent mid-infraröd- och terahertzstrålning är kvantkaskadlasern, som utnyttjar övergångar mellan subband i noggrant utformade periodiska halvledarkvantbrunnar. Den här processen tillåter hög effekt och justerbar våglängd, men leder också till högre värmeutveckling jämfört med konventionella laserövergångar. Det här motverkas typiskt genom att utnyttja begravda heterostrukturer för att maximera värmeledningen bort ifrån det lasrande området. Att återodla InP:Fe på InGaAs/AlGaAs – strukturer har visat sig vara väldigt effektivt trots de okonventionella geometriska kraven som ställs på epitaxiprocessen. I det här arbetet har InP:Fe återodlats på pelare av kvantkaskadlaserstrukturer arrangerade i ett hexagonalt mönster till en fotonisk kristall. Simuleringsarbete med en finita-element-metod utfördes för att undersöka effekten av återodlingen på värmehanteringen. Resultaten visar att, precis som för mer väletablerade linjära strukturer, InP:Fe förbättrar värmeledningen markant jämfört med andra material med sämre termiska egenskaper. Återodling av InP:Fe på en kvantkaskadlaser med fotonikkristallstruktur utfördes, där den höga tillväxthastigheten och tillväxtanisotropin ledde till komplett planarisering av de 12 µm höga pelarna på 13 min. Slutligen utfördes också återodling av InP:Fe på en mer konventionell kvantkaskadlaser men med en avsmalnande design för att öka tillståndstätheten och ge högre effekt. Dessa lasrars L-I-V egenskaper och strålstabilitet undersöktes under kvasi-kontinuerligt lasrande vid rumstemperatur.

De avancerade epitaxiella tekniker och deras användning inom olika områden som presenteras bygger alla på att utnyttja fördelarna och motverka begränsningarna hos hydridbaserad ångfasepitaxi. De ekonomiska fördelarna kombinerat med dess unika egenskaper demonstrerar stor potential för applikationer inom integration av III-V på kisel samt för källor till mid-infraröd- och terahertzstrålning.

Place, publisher, year, edition, pages
Stockholm: KTH Royal Institute of Technology, 2022. , p. 141
Series
TRITA-SCI-FOU ; 2022:37
Keywords [en]
HVPE, III-V/Si, Photovoltaics, PEC, MIR, non-linear optics, QPM, QCL
National Category
Condensed Matter Physics
Research subject
Energy Technology
Identifiers
URN: urn:nbn:se:kth:diva-318611ISBN: 978-91-8040-344-3 (print)OAI: oai:DiVA.org:kth-318611DiVA, id: diva2:1698115
Public defence
2022-10-14, FR4 Oskar Kleins Auditorium, Roslagstullsbacken 21, Stockholm, 10:30 (English)
Opponent
Supervisors
Funder
Swedish Energy Agency, 44644-1EU, Horizon 2020, 828893Knut and Alice Wallenberg Foundation, 2015.0044Available from: 2022-09-23 Created: 2022-09-22 Last updated: 2022-09-23Bibliographically approved
List of papers
1. Direct Heteroepitaxy of Orientation-Patterned GaP on GaAs by Hydride Vapor Phase Epitaxy for Quasi-Phase-Matching Applications
Open this publication in new window or tab >>Direct Heteroepitaxy of Orientation-Patterned GaP on GaAs by Hydride Vapor Phase Epitaxy for Quasi-Phase-Matching Applications
Show others...
2020 (English)In: Physica Status Solidi (A): Applied Research, ISSN 0031-8965, E-ISSN 1521-396X, Vol. 217, no 3, p. 1900627-Article in journal (Refereed) Published
Abstract [en]

Heteroepitaxial growth of orientation‐patterned (OP) GaP (OP‐GaP) on wafer‐bonded OP‐GaAs templates is investigated by low‐pressure hydride vapor phase epitaxy for exploiting the beneficial low two‐photon absorption properties of GaP with the matured processing technologies and higher‐quality substrates afforded by GaAs. First, GaP homoepitaxial selective area growth (SAG) is conducted to investigate the dependence of GaP SAG on precursor flows and temperatures toward achieving a high vertical growth rate and equal lateral growth rate in the [110] and [-110]‐oriented openings. Deteriorated domain fidelity is observed in the heteroepitaxial growth of OP‐GaP on OP‐GaAs due to the enhanced growth rate on domain boundaries by threading dislocations generated by 3.6% lattice matching in GaP/GaAs. The dependence of dislocation dynamics on heteroepitaxial growth conditions of OP‐GaP on OP‐GaAs is studied. High OP‐GaP domain fidelity associated with low threading dislocation density and a growth rate of 57 μm h−1 are obtained by increasing GaCl flow. The properties of heteroepitaxial GaP on semi‐insulating GaAs is studied by terahertz time‐domain spectroscopy in the terahertz range. The outcomes of this work will pave the way to exploit heteroepitaxial OP‐GaP growth on OP‐GaAs for frequency conversion by quasi‐phase‐matching in the mid‐infrared and terahertz regions.

Keywords
heteroepitaxy, hydride vapor phase epitaxy, orientation-patterned GaP, quasi-phase-matching, wafer-bonded orientation-patterned GaAs
National Category
Condensed Matter Physics
Identifiers
urn:nbn:se:kth:diva-263074 (URN)10.1002/pssa.201900627 (DOI)000491109100001 ()2-s2.0-85074368712 (Scopus ID)
Funder
Knut and Alice Wallenberg Foundation
Note

QC 20191111

Available from: 2019-10-29 Created: 2019-10-29 Last updated: 2025-08-28Bibliographically approved
2. Heteroepitaxy of GaAsP and GaP on GaAs and Si by low pressure hydride vapor phase epitaxy
Open this publication in new window or tab >>Heteroepitaxy of GaAsP and GaP on GaAs and Si by low pressure hydride vapor phase epitaxy
Show others...
2020 (English)In: Journal of Crystal Growth, ISSN 0022-0248, E-ISSN 1873-5002, Vol. 540, article id 125623Article in journal (Refereed) Published
Abstract [en]

Direct heteroepitaxy of GaAsP and GaP on GaAs and on Si by low-pressure hydride vapor phase epitaxy (HVPE) is investigated as prior studies for photovoltaics and non-linear optics applications. When growing GaAsP on GaAs, it is found that the ambient gas during substrate pre-heating influences the ternary composition as well as the crystalline quality of the subsequent growth. GaAs0.72P0.28 with bandgap energy of 1.76 eV has been achieved, which would be suitable for a top cell in Si tandem solar cell structures. Growth of GaP was investigated on planar GaAs as a prior study for realizing orientation patterned (OP) GaP on OP-GaAs. Threading dislocations caused by the 3.6% lattice mismatch between GaP and GaAs are suppressed by adjusting the GaCl flow, achieving a low full width at half maximum of 146 arcsec for the X-ray diffraction omega scan. Direct heteroepitaxy of GaAsP on Si aiming for achieving a GaAsP/Si dual junction solar cell is demonstrated. The inherent problem of initiating nucleation during the direct heteroepitaxy of III-V on Si by HVPE is overcome by utilizing the vapor mixing approach to grow a low-temperature GaP buffer layer on Si, followed by a GaAsP layer grown by conventional HVPE.

Place, publisher, year, edition, pages
ELSEVIER, 2020
Keywords
Line defects, Hydride vapor phase epitaxy, Semiconducting III-V materials, Nonlinear optic materials, Heterojunction semiconductor devices, Solar cells
National Category
Condensed Matter Physics
Identifiers
urn:nbn:se:kth:diva-273874 (URN)10.1016/j.jcrysgro.2020.125623 (DOI)000531491600006 ()2-s2.0-85082700749 (Scopus ID)
Note

QC 20200603

Available from: 2020-06-03 Created: 2020-06-03 Last updated: 2022-09-22Bibliographically approved
3. Direct Heteroepitaxy and Selective Area Growth of GaP and GaAs on Si by Hydride Vapor Phase Epitaxy
Open this publication in new window or tab >>Direct Heteroepitaxy and Selective Area Growth of GaP and GaAs on Si by Hydride Vapor Phase Epitaxy
Show others...
2021 (English)In: Physica Status Solidi (a) applications and materials science, ISSN 1862-6300, E-ISSN 1862-6319, Vol. 218, no 3, article id 2000447Article in journal (Refereed) Published
Abstract [en]

Direct heteroepitaxy and selective area growth (SAG) of GaP and GaAs on Si(100) and Si(111) are implemented by low-pressure hydride vapor phase epitaxy (LP-HVPE), which are facilitated by buffer layers grown at 410–490 °C with reactive gas mixing directly above Si substrates. High-density islands observed on GaP buffer layers on Si result in rough morphology and defect formation in the subsequent GaP layers grown at 715 °C. The impact of growth temperature of GaAs buffer layers on the crystal quality of GaAs/Si is studied. A decreased nucleation temperature significantly improves the morphology and crystalline quality of the overall GaAs growth on Si. It is observed that Si(111) substrates are favorable for both GaP and GaAs growths in comparison with Si(100). In SAGs of GaP/Si and GaAs/Si, the high selectivity innate to HVPE is maintained in the used unconventional growth regime. The spatially resolved photoluminescence mapping reveals the material quality of GaAs/Si is enhanced by defect filtering by SAG. The outcomes of this work will pave the way of III–V/Si integration realized by cost-effective HVPE for photonic device applications.

Place, publisher, year, edition, pages
Wiley-VCH Verlag, 2021
Keywords
heteroepitaxy, hydride vapor phase epitaxy, III–V/Si integration, selective area growth, vapor mixing epitaxy, Buffer layers, Cost effectiveness, Defects, Gallium arsenide, Gallium phosphide, Hydrides, Morphology, Nanocrystalline materials, Photonic devices, Semiconducting gallium, Silicon compounds, Vapor phase epitaxy, Crystal qualities, Crystalline quality, Device application, Nucleation temperature, Photoluminescence mapping, Spatially resolved, III-V semiconductors
National Category
Physical Sciences
Identifiers
urn:nbn:se:kth:diva-290820 (URN)10.1002/pssa.202000447 (DOI)000583315700001 ()2-s2.0-85094648757 (Scopus ID)
Note

QC 20210323

Available from: 2021-03-23 Created: 2021-03-23 Last updated: 2022-12-06Bibliographically approved
4. Epitaxial lateral overgrowth of GaAsP for III-V/Si based photovoltaics
Open this publication in new window or tab >>Epitaxial lateral overgrowth of GaAsP for III-V/Si based photovoltaics
Show others...
(English)Manuscript (preprint) (Other academic)
Keywords
HVPE, III-V/Si integration, III-V epitaxy, Solar power, Photovoltaics
National Category
Nano Technology
Research subject
Energy Technology
Identifiers
urn:nbn:se:kth:diva-318817 (URN)
Funder
Swedish Energy Agency, 44644-1
Note

QC 20220930

Available from: 2022-09-22 Created: 2022-09-22 Last updated: 2022-09-30Bibliographically approved
5. Heteroepitaxial growth of GaP photocathode by hydride vapor phase epitaxy for water splitting and CO2 reduction
Open this publication in new window or tab >>Heteroepitaxial growth of GaP photocathode by hydride vapor phase epitaxy for water splitting and CO2 reduction
Show others...
(English)Manuscript (preprint) (Other academic)
Keywords
PEC, CO2RR, HER, III-V/Si, HVPE, GaP/Si
National Category
Nano Technology
Research subject
Energy Technology
Identifiers
urn:nbn:se:kth:diva-318822 (URN)
Note

QC 20220930

Available from: 2022-09-22 Created: 2022-09-22 Last updated: 2022-09-30Bibliographically approved
6. Reverse-Taper Mid-Infrared Quantum Cascade Lasers for Coherent Power Scaling
Open this publication in new window or tab >>Reverse-Taper Mid-Infrared Quantum Cascade Lasers for Coherent Power Scaling
Show others...
2022 (English)In: IEEE Photonics Journal, E-ISSN 1943-0655, Vol. 14, no 3, article id 1522706Article in journal (Refereed) Published
Abstract [en]

We present a reverse-taper quantum cascade laser (QCL) emitting at 4.6 mu m, a novel-geometry device that can scale the output power while maintaining good beam quality. Buried-ridge waveguides with tapered and straight regions were formed by ICP etching and HVPE regrowth - the tapered region scales the output power, while the emitting facet is located at the narrow-end taper section, which provides mode filtering by suppressing high-order spatial modes. Beam profiles were observed under quasi-continuous-wave (QCW)/CW operation and beam quality (M-2) measurements along with beam-stability measurements were performed - a small degree of collimated-beam centroid movement (<0.46 mrad, peak-to-peak) was observed, along with M-2 values close to 1 up to similar to 1 W QCW power. Devices of shorter cavity lengths were also investigated, indicating that the output power scales with the core-region volume but results in a small increase in angular deviation.

Place, publisher, year, edition, pages
Institute of Electrical and Electronics Engineers (IEEE), 2022
Keywords
Licenses, Quantum cascade lasers, beam steering, semiconductor growth
National Category
Atom and Molecular Physics and Optics
Identifiers
urn:nbn:se:kth:diva-311906 (URN)10.1109/JPHOT.2022.3163409 (DOI)000784186800004 ()2-s2.0-85127459551 (Scopus ID)
Note

QC 20220506

Available from: 2022-05-06 Created: 2022-05-06 Last updated: 2022-09-28Bibliographically approved

Open Access in DiVA

Online Electronic version(5541 kB)490 downloads
File information
File name FULLTEXT01.pdfFile size 5541 kBChecksum SHA-512
8d354349d6acb6edb291a98b9dab0567430666a24acc9f76af3bab9dd58bd1dd6b7fda1ff2fb8170fb382717deda03e1030aee7da1d9f4c45f1727ded779c23a
Type fulltextMimetype application/pdf

Authority records

Strömberg, Axel

Search in DiVA

By author/editor
Strömberg, Axel
By organisation
Photonics
Condensed Matter Physics

Search outside of DiVA

GoogleGoogle Scholar
Total: 492 downloads
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

isbn
urn-nbn

Altmetric score

isbn
urn-nbn
Total: 769 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf