kth.sePublications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Design of Cellulose-Based Electrically Conductive Composites: Fundamentals, Modifications, and Scale-up
KTH, Superseded Departments (pre-2005), Fibre and Polymer Technology. KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology, Fibre Technology. (Fibre Technology)ORCID iD: 0000-0002-9113-8413
2022 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

Modern demand for consumer electronics is fueling the generation of 'E-waste.' Furthermore, theraw materials and manufacturing methods used in the fabrication of electronics are not sustainable.There is therefore the need to develop renewable and sustainable raw materials for electronicdevices that do not sacrifice performance; as well as a requirement to develop novel, scalable,sustainable electronic device fabrication methods that use these green electronic materials. To thisend, bio-based materials are an environment-friendly alternative to non-renewable materials; andprinted electronics could replace traditional manufacturing methods. Cellulose, one of the mostabundant biopolymers on Earth, exhibits an interesting hierarchical structure. Due to extensiveresearch over the years, there are a wide variety of established chemical modifications for cellulose,which can be harnessed to prepare high-performance electronic components. The hierarchicalstructure of cellulose is crucial in defining its material properties. In cellulose rich fibers, highmolecular mass glucan polymers are commonly found in the form of cellulose nanofibrils (CNFs);these can be liberated and, once so, are capable of self-assembling into a wide variety of structures.Since cellulose is electrically insulating, it needs to be made into composites with conductivematerials to form electrically conductive materials.This thesis investigates the interaction between cellulose and the conductive polymer PEDOT:PSS(poly(3,4-ethylenedioxythiophene) : polystyrene sulfonate), and demonstrates how a fundamentalunderstanding of the interactions between the two can be used to guide the chemical modificationof cellulose for the large scale production of sustainable electronics. First, the PEDOT:PSS structurewas studied using molecular dynamics (MD) simulations and experimental methods. Secondly, theinteraction between cellulose and PEDOT:PSS was studied, and factors affecting this interactionwere identified. This knowledge was then applied to propose a molecular interaction mechanismbetween these materials. Nanocellulose, especially cellulose nanofibrils (CNFs), have been integralto the development of bio-based conductive composites. However, the nanofibrillation process isexpensive and energy-intensive. In addition, PEDOT:PSS is an expensive polymer. Therefore, inthis work, chemically modified fibers were used to improve the interaction between cellulose andPEDOT:PSS; and prepare fiber-based bioelectronics and energy storage devices. The large-scaleproduction of papers capable of energy storage has also been demonstrated using chemicallymodifiedfibers, the factors affecting the processing of these materials have been identifiedthroughout.

Abstract [sv]

En enorm efterfrågan på hemelektronik skapar ett stort "e-avfalls” problem i dagenssamhälle. De råvaror som idag används för att tillverka elektronik har ett högtkoldioxidavtryck, och traditionella tillverkningsmetoder för elektronik är dessutomenergikrävande. Därför finns det en stort behov av högpresterande, hållbara, billiga,förnyelsebara råvaror för elektroniska komponenter. Dessutom behövs nya, hållbarabearbetningsmetoder för att producera elektroniska komponenter med lägre mängderinbyggd energi. I detta avseende är biobaserade material ett miljövänligt alternativ till ickeförnybaramaterial och tryckt elektronik skulle kunna användas för att ersätta traditionellatillverkningsmetoder. Cellulosa är en mycket vanligt förekommande biopolymer i mångaväxter och i vissa djur och det finns många rationella metoder för att utvinna denna polymeroch polymeren är därför en mycket intressant råvara för framtida produkter. Denhögmolekylära glukanmolekylen organiseras i i de flesta fallen i cellulosa nanofibriller (CNF)som sedan anordnas i en hierarkisk struktur i makroskopiska fibrer. Modern forskning harockså visat att de frilagda fibrillerna kan självorganiseras i skräddarsydda nano-strukturersom kan vara mycket intressanta för att tillverka högpresterande elektroniska komponenter.Med hjälp av all den forskning som genomförts för cellulosamaterial genom åren finns detockså tillgång till en fantastisk verktygslåda för att kemiskt modifiera cellulosa för att passa iolika tillämpningar. Eftersom cellulosa är elektriskt isolerande är det nödvändigt attkombinera cellulosa med ett ledande material för att skapa skräddarsydda komponenter medgod elektrisk ledningsförmåga.Arbetet i denna avhandling har fokuserats på studera växelverkan mellan cellulosa och denledande polymer PEDOT:PSS, och för att klarlägga hur denna grundläggande förståelse kanutnyttjas för att identifiera nödvändiga kemiska modifieringar på cellulosan för att överföraresultaten till storskalig produktion av hållbar elektronik. Initialt studerades den molekyläraoch övermolekylära strukturen hos PEDOT:PSS komplex med en kombination avmolekylärdynamiska (MD) simuleringar och experimentella undersökningar. För det andrastuderades växelverkan mellan cellulosa och PEDOT:PSS, och det visade sig möjligt attidentifiera de faktorer som kontrollerar denna växelverkan. Dessa kunskaper användes sedanför att molekylärt förklara hur dessa material fundamentalt växelverkar med varandra.Nanocellulosa, särskilt cellulosa nanofibriller (CNF) har varit en del av biobaserade ledandekompositer. Nanofibrilleringsprocessen är dock kostnads- och energikrävande. Dessutom ärPEDOT:PSS en dyr polymer. Därför användes i detta arbete kemiskt modifierade fibrer föratt förbättra interaktionen mellan cellulosa och PEDOT:PSS (för att minska kostnaderna),och för att förbereda fiberbaserad bioelektronik och energilagringsenheter. Storskaligproduktion av energilagringspapper demonstrerades också med kemiskt modifierade fibreroch faktorer som påverkar bearbetningen av dessa material identifierades.

Place, publisher, year, edition, pages
Stockholm: KTH Royal Institute of Technology, 2022. , p. 71
Series
TRITA-CBH-FOU ; 2022:55
Keywords [en]
Cellulose nanofibrils, PEDOT:PSS, chemically-modified cellulose fibers, fundamental interactions, bioelectronics, energy storage, conductive paper production, large-scale production
National Category
Paper, Pulp and Fiber Technology Composite Science and Engineering Materials Chemistry
Research subject
Fibre and Polymer Science
Identifiers
URN: urn:nbn:se:kth:diva-321659ISBN: 978-91-8040-405-1 (print)OAI: oai:DiVA.org:kth-321659DiVA, id: diva2:1712054
Public defence
2022-12-16, F3, Lindstedtsvägen 26, Stockholm, 14:00 (English)
Opponent
Supervisors
Funder
Vinnova
Note

QC 2022-11-21. Embargo godkänt av Mikael Lindström, skolchef CBH.

Available from: 2022-11-21 Created: 2022-11-19 Last updated: 2023-12-16Bibliographically approved
List of papers
1. PEDOT:PSS nano-particles in aqueous media: A comparative experimental and molecular dynamics study of particle size, morphology and z-potential
Open this publication in new window or tab >>PEDOT:PSS nano-particles in aqueous media: A comparative experimental and molecular dynamics study of particle size, morphology and z-potential
2021 (English)In: Journal of Colloid and Interface Science, ISSN 0021-9797, E-ISSN 1095-7103, Vol. 584, p. 57-66Article in journal (Refereed) Published
Abstract [en]

PEDOT:PSS is the most widely used conducting polymer in organic and printed electronics. PEDOT:PSS films have been extensively studied to understand the morphology, ionic and electronic conductivity of the polymer. However, the polymer dispersion, which is used to cast or spin coat the films, is not well characterized and not well understood theoretically. Here, we study in detail the particle morphology, size, charge density and zeta potential (z-potential) by coarse-grained MD simulations and dynamic light scattering (DLS) measurements, for different pH levels and ionic strengths. The PEDOT:PSS particles were found to be 12 nm–19 nm in diameter and had a z-potential of −30 mV to −50 mV when pH was changed from 1.7 to 9, at an added NaCl concentration of 1 mM, as measured by DLS. These values changed significantly with changing pH and ionic strength of the solution. The charge density of PEDOT:PSS particles was also found to be dependent on pH and ionic strength. Besides, the distribution of different ions (PSS−, PEDOT+, Na+, Cl−) present in the solution is simulated to understand the particle morphology and molecular origin of z-potential in PEDOT:PSS dispersion. The trend in change of particle size, charge density and z- potential with changing pH and ionic strength are in good agreement between the simulations and experiments. Our results show that the molecular model developed in this work represents very well the PEDOT:PSS nano-particles in aqueous dispersion. With this study, we hope to provide new insight and an in-depth understanding of the morphology and z-potential evolution in PEDOT:PSS dispersion.

Place, publisher, year, edition, pages
Elsevier BV, 2021
Keywords
PEDOT:PSS, nanocellulose, QCM, adhesion
National Category
Paper, Pulp and Fiber Technology
Research subject
Chemistry
Identifiers
urn:nbn:se:kth:diva-294443 (URN)10.1016/j.jcis.2020.09.070 (DOI)000600391700006 ()33059231 (PubMedID)2-s2.0-85092391644 (Scopus ID)
Funder
Vinnova
Note

QC 20210518

Available from: 2021-05-17 Created: 2021-05-17 Last updated: 2022-11-19Bibliographically approved
2. On the interaction between PEDOT:PSS and cellulose: Adsorption mechanisms and controlling factors
Open this publication in new window or tab >>On the interaction between PEDOT:PSS and cellulose: Adsorption mechanisms and controlling factors
2021 (English)In: Carbohydrate Polymers, ISSN 0144-8617, E-ISSN 1879-1344, Vol. 260, article id 117818Article in journal (Refereed) Published
Abstract [en]

Poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS) is a conducting polymer frequently used with cellulose, to develop advanced electronic materials. To understand the fundamental interactions between cellulose and PEDOT:PSS, a quartz crystal microbalance with dissipation (QCM-D) was used to study the adsorption of PEDOT:PSS onto model films of cellulose-nanofibrils (CNFs) and regenerated cellulose. The results show that PEDOT:PSS adsorbs spontaneously onto anionically charged cellulose wherein the adsorbed amount can be tuned by altering solution parameters such as pH, ionic strength and counterion to the charges on the CNF. Temperature-dependent QCM-D studies indicate that an entropy gain is the driving force for adsorption, as the adsorbed amount of PEDOT:PSS increased with increasing temperature. Colloidal probe AFM, in accordance with QCM-D results, also showed an increased adhesion between cellulose and PEDOT:PSS at low pH. AFM images show bead-like PEDOT:PSS particles on CNF surfaces, while no such organization was observed on the regenerated cellulose surfaces. This work provides insight into the interaction of PEDOT:PSS/cellulose that will aid in the design of sustainable electronic devices.

Place, publisher, year, edition, pages
Elsevier BV, 2021
Keywords
Cellulose, QCM-D, Adsorption, Colloidal probe-AFM, Adhesion
National Category
Physical Chemistry
Identifiers
urn:nbn:se:kth:diva-292592 (URN)10.1016/j.carbpol.2021.117818 (DOI)000629284700002 ()33712162 (PubMedID)2-s2.0-85101376679 (Scopus ID)
Note

QC 20210414

Available from: 2021-04-14 Created: 2021-04-14 Last updated: 2022-11-19Bibliographically approved
3. 3D printable composites of modified cellulose fibers and conductive polymers and their use in wearable electronics
Open this publication in new window or tab >>3D printable composites of modified cellulose fibers and conductive polymers and their use in wearable electronics
(English)Manuscript (preprint) (Other academic)
National Category
Paper, Pulp and Fiber Technology
Identifiers
urn:nbn:se:kth:diva-321502 (URN)
Note

QC 20221129

Available from: 2022-11-16 Created: 2022-11-16 Last updated: 2022-11-29Bibliographically approved
4. The effect of chemically modifed cellulose fibers on the structure and properties of composites with PEDOT:PSS
Open this publication in new window or tab >>The effect of chemically modifed cellulose fibers on the structure and properties of composites with PEDOT:PSS
(English)Manuscript (preprint) (Other academic)
National Category
Paper, Pulp and Fiber Technology
Identifiers
urn:nbn:se:kth:diva-321571 (URN)
Note

QC 20221129

Available from: 2022-11-17 Created: 2022-11-17 Last updated: 2022-11-29Bibliographically approved
5. Production of energy-storage paper electrodes using a pilot-scale paper machine
Open this publication in new window or tab >>Production of energy-storage paper electrodes using a pilot-scale paper machine
Show others...
2022 (English)In: Journal of Materials Chemistry A, ISSN 2050-7488, E-ISSN 2050-7496, Vol. 10, no 40, p. 21579-21589Article in journal (Refereed) Published
Place, publisher, year, edition, pages
Royal Society of Chemistry (RSC), 2022
National Category
Paper, Pulp and Fiber Technology
Identifiers
urn:nbn:se:kth:diva-321339 (URN)10.1039/d2ta04431e (DOI)000859988400001 ()2-s2.0-85140059550 (Scopus ID)
Funder
Vinnova, 2016-05193
Note

QC 20221114

Available from: 2022-11-11 Created: 2022-11-11 Last updated: 2022-11-19Bibliographically approved

Open Access in DiVA

Kappa(2537 kB)302 downloads
File information
File name FULLTEXT01.pdfFile size 2537 kBChecksum SHA-512
96445f8d9711dc47e7881052b3324e833e32878172d932e7076051c5f57cd0032fbb8f080e0eb41c610c3869bd0e3ef5fe86540a3372ec63f3a250a357f78216
Type fulltextMimetype application/pdf

Authority records

Jain, Karishma

Search in DiVA

By author/editor
Jain, Karishma
By organisation
Fibre and Polymer TechnologyFibre Technology
Paper, Pulp and Fiber TechnologyComposite Science and EngineeringMaterials Chemistry

Search outside of DiVA

GoogleGoogle Scholar
Total: 302 downloads
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

isbn
urn-nbn

Altmetric score

isbn
urn-nbn
Total: 1346 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf