kth.sePublications
Planned maintenance
A system upgrade is planned for 10/12-2024, at 12:00-13:00. During this time DiVA will be unavailable.
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Computationally Efficient Energy Management for a Parallel Hybrid Electric Vehicle Using Adaptive Dynamic Programming
KTH, School of Industrial Engineering and Management (ITM), Engineering Design, Mechatronics and Embedded Control Systems.ORCID iD: 0000-0001-9556-6856
KTH, School of Industrial Engineering and Management (ITM), Engineering Design, Mechatronics and Embedded Control Systems.ORCID iD: 0000-0003-4535-3849
KTH, School of Electrical Engineering and Computer Science (EECS), Electrical Engineering, Electronics and Embedded systems, Electronic and embedded systems.ORCID iD: 0000-0002-4911-0257
KTH, School of Industrial Engineering and Management (ITM), Centres, Innovative Centre for Embedded Systems, ICES.ORCID iD: 0000-0001-5703-5923
(English)In: Article in journal (Refereed) Submitted
Abstract [en]

Hybrid electric vehicles (HEVs) rely on energy management strategies (EMSs) to achieve optimal fuel economy. However, both model- and learning-based EMSs have their respective limitations which negatively affect their performances in online applications. This paper presents a computationally efficient adaptive dynamic programming (ADP) approach that can not only rapidly calculate optimal control actions but also iteratively update the approximated value function (AVF) according to the actual fuel and electricity consumption with limited computation resources. Exploiting the AVF, the engine on/off switch and torque split problems are solved by one-step lookahead approximation and Pontryagin’s minimum principle (PMP), respectively. To raise the training speed and reduce the memory space, the tabular value function (VF) is approximated by carefully selected piecewise polynomials via parametric approximation. The advantages of the proposed EMS are threefold and verified by processor-in-the-loop (PIL) Monte Carlo simulations. First, the fuel efficiency of the proposed EMS is higher than that of an adaptive PMP and close to the theoretical optimum. Second, the new method can adapt to the changed driving conditions after a small number of learning iterations and then has higher fuel efficiency than a non-adaptive dynamic programming (DP)controller. Third, the computation efficiencies of the proposed AVF and a tabular VF are compared. The AVF data structure enables faster convergence and saves at least 70% of onboard memory space without obviously increasing the average CPU utilization.

Keywords [en]
Hybrid electric vehicle, Energy management strategy, Adaptive dynamic programming, Approximated value function
National Category
Vehicle Engineering
Identifiers
URN: urn:nbn:se:kth:diva-326338OAI: oai:DiVA.org:kth-326338DiVA, id: diva2:1753630
Funder
XPRES - Initiative for excellence in production research
Note

QC 20230503

Available from: 2023-04-28 Created: 2023-04-28 Last updated: 2023-05-03Bibliographically approved
In thesis
1. Computationally Efficient and Adaptive Energy Management Strategies for Parallel Hybrid Electric Vehicles
Open this publication in new window or tab >>Computationally Efficient and Adaptive Energy Management Strategies for Parallel Hybrid Electric Vehicles
2023 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

Hybrid electric vehicles (HEVs) are irreplaceable in attaining sustainable development in contemporary society. Owing to the extra degree of freedom in supplying traction power, HEVs resort to appropriate energy management strategies (EMSs) to present their superiority over conventional internal combustion engine vehicles and pure electric vehicles.

Existing EMSs suffer from heavy computation overheads and excessive mode switches. This thesis proposes several novel methods for developing online EMSs for parallel HEVs that achieve both compelling fuel economy and excellent computation efficiency and adaptivity in online applications with uncertain driving conditions.

First, the solutions of offline dynamic programming (DP) are exploited to develop online EMSs for close-to-optimal control performances. The optimal speed profile serves as the reference in online control and the optimal value function (VF) is utilized to design control methods. To avoid the “curse of dimensionality”, the tabular VF is approximated by piecewise polynomials to substantially decrease the computation and memory overheads in online usage.

Second, to reduce the search space for optimal control actions, two types of special internal combustion engine (ICE) configurations are adopted and analyzed. The first type forces the ICE to strictly operate at the optimal operation line (OOL), whereas the second one allows a narrow band around the OOL. The second one outperforms the first one because it contributes to more robust ICE operations with slightly higher computation complexity.

Third, a hierarchical architecture is proposed for online EMSs so that the transient powertrain mode and torque split scheme are optimized by different methods in sequence. To avoid the exponential complexity of finding the optimal trajectory of the powertrain mode, the optimal VF is leveraged for an optimal decision within one sampling period with the aid of simplified assumptions. Model approximations on the ICE and the electric motor are conducted so as to convert the complex torque split problem into a constrained quadratic programming problem. These methods dramatically facilitate the computation efficiency of online EMSs.

Fourth, learning-based adaptive control is introduced to mitigate the adverse effect caused by the deviations between the model and the reality. For this target, efficient learning algorithms are designed to iteratively update the coefficient matrix of the approximated VF. Moreover, to avoid the pitfall of the “cold start” and prompt a fast convergence, the coefficient matrix is initialized by the optimal VF from offline DP.

Finally, an event-triggered control mechanism is applied to the torque split control and presents its remarkable advantage in eliminating the excessive computation overheads. At each time step, an efficient trigger algorithm decides if the reference ICE torque is still valid or outdated. If it is valid, the EMS directly uses the reference value as the optimal output; otherwise, the optimization algorithm for torque split control is executed to solve a new value and update the reference.

The performances of designed EMSs are tested by processor-in-the-loop simulations so that both the numeric results and the computation efficiency can be obtained for quantitative analysis and comparison. The testing results indicate that the designed EMSs can rapidly adapt to real driving conditions and generate more than 90% fuel economy of the DP optimum, and more importantly, all these EMSs can be implemented on a portable microprocessor with limited onboard computation resources.

Abstract [sv]

Elhybridfordon (HEV) är oersättliga för att uppnå en hållbar utveckling i dagens samhälle. Medelst den extra frihetsgraden för att tillhandahålla dragkraft, använder HEV:erna sig av s.k. energihanteringstrategier (EMS) för att kombinera fördelarna med konventionella förbränningsmotorfordon och rena elfordon.

Befintliga EMS lider av tunga beräkningskostnader och överdrivna lägesomkopplare. Denna avhandling flera nya metoder för att utveckla online-EMS för parallella HEV som uppnår både övertygande bränsleekonomi och utmärkt beräkningseffektivitet, samt god anpassningsförmåga i online tillämpningar med osäkra körförhållanden.

För det första utnyttjas lösningarna från offline dynamisk programmering (DP) för att utveckla online EMS med nära optimal reglerprestanda. Den optimala hastighetsprofilen tjänar som referens vid online-reglering och den optimala värdefunktionen (VF) används för att utforma reglermetoder. För att undvika de problem som uppstår vid storskaliga beräkningar approximeras VF som en uppsättning polynom, vilket sänker bl.a. minneskostnader vid onlineanvändning.

För det andra analyseras två typer av speciella förbränningsmotorkonfigurationer (ICE) vilket minskar sökutrymmet för optimala regleråtgärder. Den första typen tvingar ICE att arbeta strikt vid den optimala driftlinjen (OOL), medan den andra typen tillåter ett smalt band runt den. Den andra typen är bättre än den första eftersom den bidrar till mer robust ICE-drift, men med något högre beräkningskomplexitet.

För det tredje föreslås en hierarkisk arkitektur för online-EMS så att det transienta drivlinjeläget och vridmomentfördelningen optimeras med olika metoder i sekvens. För att undvika den exponentiella komplexiteten i att hitta den optimala banan för drivlinjeläget utnyttjas en VF grundad på förenklade antaganden, vilket leder till ett optimalt beslut inom en samplingsperiod. Modellförenklingar av både ICE och elmotorn genomförs för att omvandla det komplexa problemet med vridmomentfördelning till ett begränsat kvadratiskt programmeringsproblem. Dessa metoder underlättar dramatiskt beräkningseffektiviteten för elektroniska EMS.

För det fjärde introduceras inlärningsbaserad adaptiv styrning för att mildra de negativa effekter som orsakas av avvikelserna mellan modell och verklighet. För detta mål utformas effektiva inlärningsalgoritmer för att iterativt uppdatera den approximerade VF. För att undvika en s.k. "kallstart" och för att få en snabb konvergens initialiseras VF med lösningen från offline-DP.

Slutligen tillämpas en händelseutlöst reglering av vridmomentfördelning, vilket påvisar anmärkningsvärda fördelar genom att eliminera överdrivna beräkningskostnader. Vid varje tidssteg avgör en effektiv utlösningsalgoritm om referensmomentet för ICE fortfarande är giltigt eller föråldrat. Om det är giltigt används det som referensvärde; i annat fall beräknar optimeringsalgoritmen för vridmomentfördelning ett nytt värde vilket uppdaterar referensen.

De utformade EMS:ernas prestanda testas med hjälp av simuleringar med beräkningar på dedikerad hårdvara (s.k. "Processor-in-the-loop"), så att både de numeriska resultaten och beräkningseffektiviteten kan erhållas för kvantitativ analys och jämförelse. Testresultaten visar att de utformade EMS:erna snabbt kan anpassa sig till verkliga körförhållanden och kan bidra till mer än $90\%$ bränslesparande jämfört med DP, och ännu viktigare är att alla dessa EMS:er kan implementeras på en bärbar mikroprocessor med begränsade beräkningsresurser.

Place, publisher, year, edition, pages
Stockholm: Kungliga tekniska högskolan, 2023. p. 93
Series
TRITA-ITM-AVL ; 2023:16
Keywords
Hybrid Electric Vehicle, Energy Management Strategy, Computation Efficiency, Value Function, Adaptive Learning, Processor-in-the- Loop Simulation, Elhybridfordon, Energihanteringsstrategi, Beräkningseffektivitet, Värdefunktion, Adaptiv Inlärning, Processor-in-the-loop
National Category
Control Engineering Vehicle Engineering Energy Engineering
Research subject
Machine Design; Applied and Computational Mathematics, Optimization and Systems Theory; Industrial Information and Control Systems
Identifiers
urn:nbn:se:kth:diva-326340 (URN)978-91-8040-548-5 (ISBN)
Public defence
2023-05-31, Gladan / https://kth-se.zoom.us/j/68364433509, Brinellvägen 85, Stockholm, 13:30 (English)
Opponent
Supervisors
Available from: 2023-05-04 Created: 2023-04-28 Last updated: 2023-07-10Bibliographically approved

Open Access in DiVA

No full text in DiVA

Authority records

Liu, TongTan, KaigeZhu, WenyaoFeng, Lei

Search in DiVA

By author/editor
Liu, TongTan, KaigeZhu, WenyaoFeng, Lei
By organisation
Mechatronics and Embedded Control SystemsElectronic and embedded systemsInnovative Centre for Embedded Systems, ICES
Vehicle Engineering

Search outside of DiVA

GoogleGoogle Scholar

urn-nbn

Altmetric score

urn-nbn
Total: 66 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf