kth.sePublications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Nanomechanical and nano-FTIR analysis of polyester coil coatings before and after artificial weathering experiments
KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Chemistry, Surface and Corrosion Science. RISE Research Institutes of Sweden, Division Materials and Production, Department of Corrosion, Isafjordsgatan 28A, SE-164 40 Kista, Sweden.ORCID iD: 0000-0001-6438-1357
KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Chemistry.ORCID iD: 0000-0002-1846-2815
KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Chemistry, Surface and Corrosion Science. RISE Research Institutes of Sweden, Bioeconomy and Health, Department of Materials and Surface Design, Drottning Kristinas väg 61, SE-114 28 Stockholm, Sweden.ORCID iD: 0000-0001-6877-9282
KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology, Coating Technology.ORCID iD: 0000-0002-2293-7481
Show others and affiliations
2024 (English)In: Progress in organic coatings, ISSN 0300-9440, E-ISSN 1873-331X, Vol. 190, article id 108355Article in journal (Refereed) Published
Abstract [en]

Local heterogeneities can have significant effects on the performance of anti-corrosion coatings. Even small features can act as initiation points for damage and result in corrosion of the substrate material. Analysis methods with high spatial resolution and the ability to collect information relevant to crosslinking and degradation behavior of these coatings are therefore highly relevant. In this work, we demonstrate the utility of nanomechanical AFM measurements and nano-FTIR in investigating the nanoscale mechanical and chemical properties of two polyester coil coating clearcoats before and after weathering. On the nanoscale, weathering led to a stiffer and less deformable coating with less variation in the nanomechanical properties. Chemical degradation was quantified using changes in band ratios in the IR-spectra. Macro and nano-scale measurements showed similar trends with the latter measurements showing larger heterogeneity. Our results demonstrate the usefulness of the described analysis techniques and will pave the way for future studies of local properties in other coating systems and formulations.

Place, publisher, year, edition, pages
Elsevier BV , 2024. Vol. 190, article id 108355
National Category
Materials Engineering
Research subject
Chemistry
Identifiers
URN: urn:nbn:se:kth:diva-326839DOI: 10.1016/j.porgcoat.2024.108355ISI: 001223181600001Scopus ID: 2-s2.0-85188822290OAI: oai:DiVA.org:kth-326839DiVA, id: diva2:1756480
Funder
Swedish Foundation for Strategic Research, FID18-0034
Note

QC 20230522

Available from: 2023-05-12 Created: 2023-05-12 Last updated: 2024-11-24Bibliographically approved
In thesis
1. Holistic evaluation and testing of coil coatings
Open this publication in new window or tab >>Holistic evaluation and testing of coil coatings
2023 (English)Licentiate thesis, comprehensive summary (Other academic)
Abstract [en]

Coil coatings are durable  organic coatings used to protect metal sheets from corrosion and improve their aesthetic properties. Because of their extensive use, coil coatings have long been of interest for industrial and academic researchers. This interest has recently been furthered by a societal push towards the replacement of fossil-based raw materials with alternatives that are biobased and renewable.

The aim of this licentiate thesis is to demonstrate how analyses on the macro-, micro-, and nanoscale can be used to better understand the degradation process of polyester-based coil coatings. The included manuscripts showcase methods for evaluating and comparing different coil coating formulations and for verifying accelerated weathering techniques.

Multiple techniques, focusing on infrared (IR) spectroscopy and atomic force microscopy (AFM), were used to analyze coating systems before and after different types of weathering. IR data acquired from techniques without spatial resolution, such as attenuated total reflection (ATR) and photoacoustic spectroscopy (PAS) have been expanded upon with spatially resolved focal plane array (FPA) and s-SNOM  (scattering-type scanning near-field optical microscopy) measurements. Spatially resolved chemical data of coating cross sections were acquired and used to assess how the degradation at the surface and in the bulk was related. Additionally, differences between the degradation behavior of a standard fossil-based coating and a similar coating with biobased components as well as differences between the degradation caused by artificial and natural weathering was discussed.

Nanoscale mechanical measurements of simplified coating surfaces showed that weathering increased nanomechanical stiffness and led to homogenization of mechanical properties on the local level. In addition, measurements with nanoscale FTIR correlated with macroscale FTIR. Even relatively minor changes in band intensities could be tracked on a local scale. Although the simplified samples were chemically homogeneous, nanoscale FTIR shows great promise for the assessment of local degradation of full systems.

Abstract [sv]

Bandlackering är en process för att applicera stabila organiska beläggningar på metallytor för att skydda från korrosion och förbättra deras utseende. På grund av beläggningarnas omfattande användning så har utvärdering och analys av dem varit av intresse för både akademi och industri i flera årtionden. Detta långvariga intresse har ytterligare främjats av en ökade miljömedvetenhet och ett tryck att ersätta miljöfarliga och fossila råmaterial mot biobaserade och förnyelsebara alternativ.

Målet med denna licentiatavhandling är att visa hur analysmetoder på makro-, mikro-, och nanonivå kan användas för att bättre förstå nedbrytning av bandlackerade beläggningar. Denna förståelse kan användas både för att utvärdera prestandan hos både nya redan befintliga system, men också för att kunna verifiera accelererade testmetoder vars mål är att minska tiden som krävs för utvärdering.

Flera tekniker, med fokus på infraröd (IR) spektroskopi och atomkrafts-mikroskopi  (AFM) använts för att analysera beläggningar före och efter att de blivit utsatta för olika typer av aggressiva miljöer. Spektroskopiska data utan spatial upplösning som attenuerad totalreflektions FTIR (ATR) och fotoakustisk spektroskopi (PAS) har kompletterats med spatialt upplösta fokalplans array (FPA) och s-SNOM mätningar. Kemisk information med spatial upplösning har använts för att utvärdera hur nedbrytningen nära ytan relaterade till nedbrytningen längre ner i beläggningen. Likheter och skillnader i nedbrytningen som skedde i en standardbeläggning och ett system med biobaserade additiv jämfördes efter både väderbestendighets-testning som skedde utomhus och i labb. Skillnader mellan dessa exponeringsmetoder diskuterades också.

Nanomekanisk analys med hjälp av atomkraftsmikroskopi användes för att bestämma lokala förändringar av mekaniska egenskaper i förenklade klarlacker. Mätningarna visade att exponeringar i aggressiva miljöer leder till en lokal homogenisering av mekaniska egenskaper och ökad styvhet. Utöver detta så utvärderades likheter och skillnader mellan FTIR spektra som tagits på makro- och nanonivå. Dessa mätningar gav lovande resultat för fortsatta ytanalyser.

Place, publisher, year, edition, pages
KTH Royal Institute of Technology, 2023. p. 59
Series
TRITA-CBH-FOU ; 2023:20
Keywords
Anti-corrosion coatings; Coil coating; Weathering; FTIR; nano-FTIR; Hyperspectral imaging; AFM; Nanomechanical properties, korrosionsskyddsbeläggnignar, bandlackerade beläggningar, väderbeständighetstestning, FTIR, nano-FTIR, hyperspectral avbildning, Atomkraftsmikroskopi, nanomekaniska egenskaper
National Category
Surface- and Corrosion Engineering Materials Engineering Materials Chemistry
Research subject
Chemistry
Identifiers
urn:nbn:se:kth:diva-326843 (URN)978-91-8040-570-6 (ISBN)
Presentation
2023-06-12, D37, Lindstedtsvägen 5, Stockholm, 10:00 (English)
Opponent
Supervisors
Funder
Swedish Foundation for Strategic Research, FID18-0034
Note

QC 2023-05-15

Available from: 2023-05-15 Created: 2023-05-12 Last updated: 2025-02-09Bibliographically approved
2. Micro- and nanoscale perspectives on degradation in coil coated materials
Open this publication in new window or tab >>Micro- and nanoscale perspectives on degradation in coil coated materials
2024 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

Coil coating is a process where durable organic coatings are applied onto metalsubstrates to prevent corrosion and to add texture or color. Recent rapiddevelopments in coating formulations, often motivated by improvedsustainability, have led to changes in established formulations. A less exploredaspect of these developments is the importance of testing and evaluationmethods. Especially methods to assess and predict long term stability. Thisthesis presents how well established and newly developed techniques can beused together to better understand and quantify degradation processes inorganic coatings. In addition, test results are also used to understand differencesbetween natural and artificial weathering methods. The focus lies on chemicalanalysis methods with spatial resolution on the micro-, and nanoscale.

Spatially resolved infrared spectroscopy shows that additions of renewablediluents or pigments significantly impact degradation, both at the surface andwithin the depth profile. The pigmentation type greatly affects the chemicaldegradation and how deep into the coating the degradation reaches. In addition,the kinetics of water transport are correlated with degradation in the coatingcross-section. Local assessments on the nanoscale using SEM- and AFM-basedtechniques reveal that TiO2 pigments causes local erosion across the surface andvoids inside the coatings. Nanoscale mechanical testing show that weatheringcaused homogenization and an increase in stiffness on the sub-micron scale innon-pigmented coatings. However, no major variation in chemical degradationacross small surface areas is observed.

Abstract [sv]

Bandlackering är en process där stabila organiska beläggningar appliceras på metallsubstrat för att förhindra korrosion samt ge textur och färg åt ytan. Snabba framsteg inom beläggningsformuleringar, ofta drivna av förbättrad hållbarhet, har lett till förändringar i etablerade formuleringar. En mindre utforskad aspekt av dessa framsteg är vikten av test- och utvärderingsmetoder, särskilt metoder för att bedöma och förutsäga långsiktig stabilitet. Denna avhandling visar hur väletablerade och nyutvecklade tekniker används tillsammans för att bättre förstå och kvantifiera nedbrytningsprocesser i organiska beläggningar. Dessutom används testresultat för att förstå skillnader mellan naturlig och artificiell väderpåverkan. Fokus ligger på kemiska analysmetoder med spatial upplösning på mikro- och nanonivå.Spatialt upplöst infraröd spektroskopi visar att tillsatser av förnybara additiv eller pigment visats ha en betydande inverkan på nedbrytning både i ytan och djupt inne i systemen. Vilken typ av pigment som finns i en beläggning kan avsevärt förändra hur mycket kemisk nedbrytning som uppstår, samt hur djupt in i beläggningen nedbrytningen når. Dessutom har en korrelation mellan vattentransport och djupgående nedbrytning observerats. Lokala mätningar med upplösning på nanonivå med SEM- och AFM-baserade tekniker visade att TiO2 orsakar lokal erosion över ytan och mikrometerstora håligheter inuti beläggningarna. Mekaniska tester på nanoskalan visade att även om exponering i natur-liknande förhållanden orsakade homogenisering och en ökning av styvheten hos beläggning över små områden. Trots detta förekom ingen större variation i kemisk nedbrytning på denna storleksskala.

Place, publisher, year, edition, pages
Stockholm, Sweden: KTH Royal Institute of Technology, 2024. p. 72
Series
TRITA-CBH-FOU ; 2024:52
Keywords
Corrosion protection, coil coating, FTIR, AFM-IR, nano-FTIR, hyperspectral imaging, nanomechanical properties, Nyckelord: Korrosionsskydd, bandlackering, vittring, FTIR, AFM-IR, nano-FTIR, hyperspektral avbildning, AFM, nanomekaniska egenskaper
National Category
Chemical Sciences
Research subject
Chemistry
Identifiers
urn:nbn:se:kth:diva-356718 (URN)978-91-8106-134-5 (ISBN)
Public defence
2024-12-18, F3, Lindstedtsvägen 26, https://kth-se.zoom.us/j/61979698033, Stockholm, 10:00 (English)
Opponent
Supervisors
Funder
Swedish Foundation for Strategic Research, FID18-0034
Note

QC 20241126

Embargo t.o.m. 2025-12-18 godkänt av skolchef Amelie Eriksson Karlström via e-post 2024-11-25

Available from: 2024-11-26 Created: 2024-11-24 Last updated: 2024-12-12Bibliographically approved

Open Access in DiVA

No full text in DiVA

Other links

Publisher's full textScopus

Authority records

Wärnheim, AlexanderKotov, NikolayDobryden, IlliaTelaretti Leggieri, RosellaHeydari, GolrokhDeltin, TomasJohnson, C. MagnusClaesson, Per M.

Search in DiVA

By author/editor
Wärnheim, AlexanderKotov, NikolayDobryden, IlliaTelaretti Leggieri, RosellaEdvinsson, CamillaHeydari, GolrokhDeltin, TomasJohnson, C. MagnusPersson, DanClaesson, Per M.
By organisation
Surface and Corrosion ScienceChemistryCoating Technology
In the same journal
Progress in organic coatings
Materials Engineering

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 302 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf