kth.sePublications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Toward Li-ion Graphite Anodes with Enhanced Mechanical and Electrochemical Properties Using Binders from Chemically Modified Cellulose Fibers
KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology.ORCID iD: 0000-0002-0534-4633
KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology, Fibre Technology.ORCID iD: 0000-0003-0519-7917
KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology, Biocomposites.ORCID iD: 0000-0001-6017-1774
KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology, Fibre Technology.ORCID iD: 0000-0002-7410-0333
Show others and affiliations
2022 (English)In: ACS Applied Energy Materials, E-ISSN 2574-0962, Vol. 5, no 8, p. 9333-9342Article in journal (Refereed) Published
Abstract [en]

Cellulose nanofibers (CNFs) are bio-sourced nanomaterials, which, after proper chemical modification, exhibit a unique ability to disperse carbon-rich micro- and nanomaterials and can be used in the design of mechanically strong functional nanocomposites. When used in the preparation of graphite anodes for Li-ion batteries, they have the potential to outperform conventional binders such as carboxymethyl cellulose (CMC) and styrene-butadiene rubber (SBR) both electrochemically and mechanically. In this study, cellulose-rich fibers were subjected to three different chemical modifications (including carbonyl-, carboxyl-, and aldehyde-functionalization) to facilitate their fibrillation into CNFs during the preparation of aqueous slurries of graphite and carbon black. Using these binders, graphite anodes were prepared through conventional blade coating. Compared to CMC/SBR reference anodes, all anodes prepared with modified cellulosic fibers as binders performed better in the galvanostatic cycling experiments and in the mechanical cohesion tests they were subjected to. Among them, the aldehyde- and carboxyl-rich fibers performed the best and resulted in a 10% increase in specific capacity with a simultaneous two- and three-fold increase of the electrode material's stress-at-failure and strain-at-break, respectively. In-depth characterizations attributed these results to the distinctive nanostructure and surface chemistry of the composites formed between graphite and these fiber-based binders. 

Place, publisher, year, edition, pages
American Chemical Society (ACS) , 2022. Vol. 5, no 8, p. 9333-9342
Keywords [en]
anode, battery, binder, cellulose, fibers, graphite, Li-ion, Aldehydes, Anodes, Binders, Chemical modification, Ions, Lithium-ion batteries, Nanostructured materials, Styrene, Surface chemistry, Textile fibers, Carbon rich, Carboxymethyl cellulose, Cellulose nanofibers, Chemically modified, Functional nanocomposites, Graphite anode, Modified cellulose fibers, Styrene/butadiene rubbers
National Category
Materials Chemistry
Identifiers
URN: urn:nbn:se:kth:diva-326795DOI: 10.1021/acsaem.2c00525ISI: 000834178600001Scopus ID: 2-s2.0-85135902365OAI: oai:DiVA.org:kth-326795DiVA, id: diva2:1756748
Note

QC 20230515

Available from: 2023-05-15 Created: 2023-05-15 Last updated: 2023-05-15Bibliographically approved

Open Access in DiVA

No full text in DiVA

Other links

Publisher's full textScopus

Authority records

Francon, HugoGörür, Yunus CanMontanari, CelineLarsson, Per A.Wågberg, Lars

Search in DiVA

By author/editor
Francon, HugoGörür, Yunus CanMontanari, CelineLarsson, Per A.Wågberg, Lars
By organisation
Fibre- and Polymer TechnologyFibre TechnologyBiocomposites
In the same journal
ACS Applied Energy Materials
Materials Chemistry

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 146 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf