kth.sePublications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Ultra-Reliable and Resilient Communication Service for Cyber-Physical Systems
KTH, School of Electrical Engineering and Computer Science (EECS), Computer Science, Communication Systems, CoS. Ericsson Research, Ericsson AB, Stockholm, Sweden.ORCID iD: 0000-0002-4406-524X
2023 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

Cyber-Physical Systems (CPSs) are becoming ubiquitous in modern society, enabling new applications that rely on the seamless interaction between computing, communication, and physical processes. In this context, ultra-reliable low-latency communications (URLLC) emerges as a crucial element, reliably allowing the real-time exchange of critical data.

In wireless networks, reliability is commonly evaluated based on the percentage of packets delivered successfully, with timeliness sometimes considered. Nevertheless, in CPSs, performance is typically assessed by operational metrics such as availability (as the ability to provide service at any given time) and reliability (as the ability to maintain consistent service over an extended period). To bridge the gap between these two domains, we study the CPSs performance in terms of wireless communications and derive a mapping function between the well-known network metrics (such as packet error ratio) and operational metrics (namely communication service availability and reliability) for deterministic traffic arrivals. This thesis then deals with wireless system orchestration techniques that aim to facilitate URLLC for CPSs, factoring in spectrum and energy efficiency. It investigates two scenarios: i) a single service, where the focus is only on URLLC, and ii) mixed services, where other services simultaneously run on the same network as URLLC.

In the first part, we assume that the impact of other nearby services on URLLC service is negligible. Accordingly, we concentrate on diversity techniques and power control as primary methods to enhance communication service availability and reliability at the cost of redundant transmissions and excessive resource usage. Thus, we devise a deep reinforcement learning (DRL) orchestrator that optimizes the number of hybrid automatic repeat request retransmissions and transmission power to enhance these metrics. We use a deep Q-network framework along with a branching soft actor-critic (BSAC) framework to address scalability issues in per-device orchestration. Our 3GPP-compliant simulations show that our approach achieves significant gains in computational time and memory requirements compared to the state-of-the-art. Besides, our approach requires substantially less energy or spectrum to achieve the target metrics. Additionally, we offer valuable insights into the practical implementation of DRL solutions for URLLC service in real-world wireless communication systems.

In the second part, we examine mixed services with an emphasis on distributed learning as a coexistent service. We consider 5G-NR's quality of service mechanisms to prioritize URLLC traffic and develop models to characterize distributed training workflow in terms of training delay, model size, and convergence. This leads to an optimization problem that uses device selection to minimize distributed learning convergence time, while meeting URLLC availability requirements. We transform this coexistence problem into a DRL problem and tackle it with our adjusted BSAC framework. Our simulations reveal that our approach achieves URLLC service availability performance comparable to the scenario where all communication resources are solely dedicated to URLLC service, and significantly higher than the performance achieved using a static slicing approach with unvarying dedicated resources to slices.  Finally, we propose a hierarchical reinforcement learning architecture for dynamic resource slicing on a large timescale, thereby enhancing network flexibility, scalability, and profitability.

Abstract [sv]

Cyberfysiska system (CPS) blir alltmer relevanta och påtagliga i det moderna samhället. I sådana system sker en sömlös interaktion mellan datorberäkningar, kommunikation och fysiska processer. I detta sammanhang spelar system för kommunikation med extremt hög tillförlitlighet och låg fördröjning, s.k. URRLC (Ultra Reliable Low Latency Communication), en nyckelroll vid överföring av viktiga och tidskritiska data. I denna avhandling undersöks existerande tekniska lösningar för att erbjuda URLLC-tjänster i CPS-tillämpningar samt dessas prestanda och begränsningar. Vidare presenteras och utvärderas våra förslag till förbättringar för URRLC-tekniker inom ramen för 5G och inom andra nätarkitekturer.

Avhandlingen inleds med en översikt av de utmaningar som möter konstruktörer av CPS inom trådlösa nätverk, samt med en jämförelse av de vanligaste förekommande trådbundna och trådlösa kommunikationsstandarderna,  inklusive 5G. Därefter presenteras en omfattande översikt av olika prestandakriterier  för CPS samt för de senaste tekniska lösningar för URLLC-tjänster.

Tillförlitligheten för ett trådlösa nätverk utvärderas vanligen genom att mäta andelen datapaket som levereras i tid. Relevanta prestandamått för CPS är däremot systemets tillgänglighet (förmågan att tillhandahålla tjänster vid en godtycklig tidpunkt) och tillförlitlighet, som här definieras som förmågan att kunna bibehålla tjänsten över tid. I syfte att överbrygga klyftan mellan dessa två domäner studeras prestanda hos CPS som utnyttjar trådlösa nätverk som kommunikationsmedium. I avhandlingen härleds ett samband mellan väletablerade prestandamått för nätverk (t.ex. paketfel) och prestandamått för CPS (tillgänglighet och tillförlitlighet) för en deterministisk trafikmodell. Denna avhandling analyserar olika implementeringsstrategier för trådlösa system för att dessa skall uppfylla de prestandakrav som ställs på CPS. Kritiska parametrar är här spektrum- och energieffektivitet.

Två scenarier studeras:  i) ett där enbart en URLLC-tjänst erbjuds, och ii) i ett scenario där URRLC tjänsten tvingas dela resurser med andra tjänster. Antagandet i det första scenariot är att resurstillgången är så god, att påverkan från övriga tjänster på URLLC är försumbar. I detta scenario koncentrerar vi oss på diversitetssteknologier och effektreglering som primära metoder för att öka kommunikationstjänstens tillförlitlighet till priset av redundanta överföringar och överkonsumtion av resurser. En maskininlärningsteknik, s.k.Deep Reinforcement Learning (DRL)) används för att optimerar omsändningsförfarande (ARQ) och sändareffekt i syfte att förbättra tillgänglighet och tillförlitlighet. . Ett djupt Q-nätverk med en s.k. ”Branching Soft Actor-Critic” (BSAC) teknik,  har använts för att lösa skalbarhetsproblem.  Vår metod utvärderas med en 3GPP-kompatibel simulator för fabriksautomatiseringsscenarier. Vi kan visa påtagliga vinster vad avser våra prestandamått men även var gäller beräkningstid och minneskrav  i jämförelse med den tidigare arbeten. Den skalbara DRL metoden resulterar i betydligt lägre total energiförbrukning och spektrumbehov för att uppnå uppsatta prestandamål. Metoden erbjuder även viktiga insikter i den praktiska implementeringen av DRL lösningar för URLLC i verkliga trådlösa kommunikationssystem.

I det andra scenariot undersöker vi hur tjänster som konkurrerar med URRLC-tjänsten om resurserna, påverkar prestanda. Vi fokuserar på ett fall där ett system för distribuerad maskininlärning är en samexisterande tjänst. Den befintliga tjänsten “5G-NR quality of service” utnyttjas här för att prioritera URLLC-trafik. Vi utvecklar modeller för att karakterisera den trafik som arbetsflödet för maskininlärning (t.ex. träning av fördröjning, modellstorlek, konvergens och noggrannhet) ger upphov till, för att kunna analysera samspelet mellan denna trafik och URLLC-tillgängligheten. Eftersom systemet har begränsade resurser (när det gäller bandbredd och överföringskraft) och tillgänglighetskraven för URLLC är strikta, måste maskinlärningen stå tillbaka och endast låta en delmängd av sina enheter delta i varje iteration av den distribuerade träningen. Vi formulerar ett optimeringsproblem som minimerar den genomsnittliga träningstiden för maskinlärningstjänsten i syfte att uppnå en viss noggrannhet utan att kompromissa med URLLC -tillgängligheten. Vi omvandlar detta samexistensproblem till ett DRL problem och använder åter vår BSAC metod för att angripas problemet. Realistiska simuleringar av scenarier för fabriksautomation har använts för utvärdering av vår metod. Resultatet är en väsentlig minskning av träningstiden inom den distribuerade maskinlärningstjänsten samtidigt som den bibehåller URLLC-tillgängligheten över det krävda tröskelvärdet. Vår metod åstadkommer en högre prestandanivå för URLLC-tillgängligheten jämfört med de konventionella statiska “slicing” metoderna och prestanda snarlika med det första scenariot, där samtliga kommunikationsresurser var dedikerade till URLLC-tjänsten, uppnås. För att övervinna begränsningar i den statiska “slicing” metoden och åstadkomma mera flexibla, skalbara och lönsamma nätverk, föreslår vi en implementering av en hierarkisk RL-metod som dynamisk allokerar kommunikation och beräkningsresurser till tjänster över en större tidskala.

Place, publisher, year, edition, pages
Stockholm: KTH Royal Institute of Technology, 2023. , p. xvii, 87
Series
TRITA-EECS-AVL ; 2023:54
Keywords [en]
5G, availability, cyber-physical systems (CPSs), deep Q-networks (DQN), deep reinforcement learning, distributed learning, machine learning, network slicing, reliability, soft actor-critic (SAC), ultra-reliable low-latency communications (URLLC), wireless communications.
National Category
Communication Systems Telecommunications
Research subject
Information and Communication Technology; Computer Science
Identifiers
URN: urn:nbn:se:kth:diva-328766ISBN: 978-91-8040-633-8 (print)OAI: oai:DiVA.org:kth-328766DiVA, id: diva2:1766191
Public defence
2023-08-24, https://kth-se.zoom.us/j/62792259961, F3, Lindstedtsvägen 26, Stockholm, 14:00 (English)
Opponent
Supervisors
Funder
Swedish Foundation for Strategic Research, ID17-0079
Note

QC 20230613

Available from: 2023-06-13 Created: 2023-06-12 Last updated: 2025-10-30Bibliographically approved
List of papers
1. Translating cyber-physical control application requirements to network level parameters
Open this publication in new window or tab >>Translating cyber-physical control application requirements to network level parameters
2020 (English)In: 2020 IEEE 31st Annual International Symposium on Personal, Indoor and Mobile Radio Communications, Institute of Electrical and Electronics Engineers (IEEE) , 2020, article id 9217378Conference paper, Published paper (Refereed)
Abstract [en]

Cyber-physical control applications impose strict requirements on the reliability and latency of the underlying communication system. Hence, they have been mostly implemented using wired channels where the communication service is highly predictable. Nevertheless, fulfilling such stringent demands is envisioned with the fifth generation of mobile networks (5G). The requirements of such applications are often defined on the application layer. However, cyber-physical control applications can usually tolerate sparse packet loss, and therefore it is not at all obvious what configurations and settings these application level requirements impose on the underlying wireless network. In this paper, we apply the fundamental metrics from reliability literature to wireless communications and derive a mapping function between application level requirements and network level parameters for those metrics under deterministic arrivals. Our mapping function enables network designers to realize the end-to-end performance (as the target application observes it). It provides insights to the network controller to either enable more reliability enhancement features (e.g., repetition), if the metrics are below requirements, or to enable features increasing network utilization, otherwise. We evaluate our theoretical results by realistic and detailed simulations of a factory automation scenario. Our simulation results confirm the viability of the theoretical framework under various burst error tolerance and load conditions.

Place, publisher, year, edition, pages
Institute of Electrical and Electronics Engineers (IEEE), 2020
Series
IEEE International Symposium on Personal Indoor and Mobile Radio Communications Workshops-PIMRC Workshops, ISSN 2166-9570
Keywords
5G, Availability, Cyber-physical systems, Markov chains, Reliability, Ultra-reliable low-latency communications, Cyber Physical System, Factory automation, Mapping, Mobile telecommunication systems, Radio communication, Wireless networks, Application level, Communication service, End-to-end performance, Net work utilization, Reliability enhancement, Target application, Theoretical framework, Wireless communications, 5G mobile communication systems
National Category
Telecommunications
Identifiers
urn:nbn:se:kth:diva-291609 (URN)10.1109/PIMRC48278.2020.9217378 (DOI)000631491700288 ()2-s2.0-85094134625 (Scopus ID)
Conference
31st IEEE Annual International Symposium on Personal, Indoor and Mobile Radio Communications, PIMRC 2020; Virtual, London; United Kingdom; 31 August 2020 through 3 September 2020
Note

QC 20210427

ISBN:nr 978-172814490-0

Available from: 2021-03-17 Created: 2021-03-17 Last updated: 2023-06-12Bibliographically approved
2. Impact of correlated failures in 5G dual connectivity architectures for URLLC applications
Open this publication in new window or tab >>Impact of correlated failures in 5G dual connectivity architectures for URLLC applications
Show others...
2019 (English)In: Proceedings 2019 IEEE Globecom Workshops, Institute of Electrical and Electronics Engineers (IEEE) , 2019Conference paper, Published paper (Refereed)
Abstract [en]

Achieving end-to-end ultra-reliability and resiliency in mission critical communications is a major challenge for future wireless networks. Dual connectivity has been proposed by 3GPP as one of the viable solutions to fulfill the reliability requirements. However, the potential correlation in failures occurring over different wireless links is commonly neglected in current network design approaches. In this paper, we investigate the impact of realistic correlation among different wireless links on end-to-end reliability for two selected architectures from 3GPP. In ultra-reliable use-cases, we show that even small values of correlation can increase the end-to-end error rate by orders of magnitude. This may suggest alternative feasible architecture designs and paves the way towards serving ultra-reliable communications in 5G networks. 

Place, publisher, year, edition, pages
Institute of Electrical and Electronics Engineers (IEEE), 2019
Keywords
5G, Correlation, Dual connectivity, Packet duplication, Reliability, Shadow fading, URLLC, Correlation methods, Mobile telecommunication systems, Network architecture, End-to-end reliabilities, Future wireless networks, Mission-critical communication, Packet duplications, Reliability requirements, 5G mobile communication systems
National Category
Electrical Engineering, Electronic Engineering, Information Engineering
Identifiers
urn:nbn:se:kth:diva-274109 (URN)10.1109/GCWkshps45667.2019.9024415 (DOI)000554832400039 ()2-s2.0-85082302508 (Scopus ID)
Conference
2019 IEEE Globecom Workshops, Waikoloa, HI, USA, December 9-13, 2019
Note

QC 20200702

Part of ISBN 978-1-7281-0960-2

Available from: 2020-07-02 Created: 2020-07-02 Last updated: 2024-10-18Bibliographically approved
3. An RL-based Joint Diversity and Power Control Optimization for Reliable Factory Automation
Open this publication in new window or tab >>An RL-based Joint Diversity and Power Control Optimization for Reliable Factory Automation
Show others...
2021 (English)In: 2021 IEEE Global Communications Conference (Globecom), Institute of Electrical and Electronics Engineers (IEEE) , 2021Conference paper, Published paper (Refereed)
Abstract [en]

Communication systems supporting cyber-physical production applications should satisfy stringent delay and reliability requirements. Violation of these requirements may result in faulty behavior of the system and cause significant economic losses. Although wireless communications enable mobility and easy maintenance to industrial networks, it introduces many challenges to high-performance control systems due to interference and harsh environments (e.g., vibrations and many metallic objects). Diversity techniques and power control are powerful approaches to reduce latency and enhance reliability at the expense of excessive resource usage due to redundant transmissions. In this paper, we adopt fundamental metrics from reliability literature to wireless communications and provide critical indicators to measure reliability key performance indicators (KPIs) of cyber-physical systems. Then, we design a deep reinforcement learning orchestrator for power control and hybrid automatic repeat request retransmissions to optimize our reliability KPIs. Our orchestrator enables near real-time control and can be implemented on the edge cloud. We implement our framework on 3GPP compliant simulator on a factory automation scenario. Our comprehensive experiments show that, compared to the state-of-the-art, our solution can substantially improve the performance, especially for 5th percentile availability.

Place, publisher, year, edition, pages
Institute of Electrical and Electronics Engineers (IEEE), 2021
Series
IEEE Global Communications Conference, ISSN 2334-0983
Keywords
5G, availability, cyber-physical systems, factory automation, reliability, reinforcement learning, URLLC
National Category
Telecommunications
Identifiers
urn:nbn:se:kth:diva-312990 (URN)10.1109/GLOBECOM46510.2021.9685916 (DOI)000790747204143 ()2-s2.0-85184367620 (Scopus ID)
Conference
IEEE Global Communications Conference (GLOBECOM), DEC 07-11, 2021, Madrid, SPAIN
Note

QC 20220530

Part of proceedings ISBN 978-1-7281-8104-2

Available from: 2022-05-30 Created: 2022-05-30 Last updated: 2024-02-22Bibliographically approved
4. Saving Energy and Spectrum in Enabling URLLC Services: A Scalable RL Solution
Open this publication in new window or tab >>Saving Energy and Spectrum in Enabling URLLC Services: A Scalable RL Solution
Show others...
2023 (English)In: IEEE Transactions on Industrial Informatics, ISSN 1551-3203, E-ISSN 1941-0050, p. 1-11Article in journal (Refereed) Published
Abstract [en]

Communication systems supporting cyber-physical production applications should satisfy stringent delay and reliability requirements. Diversity techniques and power control are the main approaches to reduce latency and enhance the reliability of wireless communications at the expense of redundant transmissions and excessive resource usage. Focusing on the application layer reliability key performance indicators (KPIs), we design a deep reinforcement learning orchestrator for power control and hybrid automatic repeat request retransmissions to optimize these KPIs. Furthermore, to address the scalability issue that emerges in the per-device orchestration problem, we develop a new branching soft actor-critic framework in which a separate branch represents the action space of each industrial device. Our orchestrator enables near real-time control and can be implemented in the edge cloud. We test our solution with a 3GPP-compliant and realistic simulator for factory automation scenarios. Compared to the state-of-the-art, our solution offers significant scalability gains in terms of computational time and memory requirements. Our extensive experiments show significant improvements in our target KPIs, over the state-of-the-art, especially for 5th percentile user availability. To achieve these targets, our framework requires substantially less total energy or spectrum, thanks to our scalable RL solution.

Place, publisher, year, edition, pages
Institute of Electrical and Electronics Engineers (IEEE), 2023
National Category
Telecommunications
Identifiers
urn:nbn:se:kth:diva-328763 (URN)10.1109/tii.2023.3240592 (DOI)001047436000029 ()2-s2.0-85148438068 (Scopus ID)
Note

QC 20231122

Available from: 2023-06-12 Created: 2023-06-12 Last updated: 2024-03-18Bibliographically approved
5. IL-GAN: Rare Sample Generation via Incremental Learning in GANs
Open this publication in new window or tab >>IL-GAN: Rare Sample Generation via Incremental Learning in GANs
Show others...
2022 (English)In: 2022 IEEE GLOBAL COMMUNICATIONS CONFERENCE (GLOBECOM 2022), Institute of Electrical and Electronics Engineers (IEEE) , 2022, p. 621-626Conference paper, Published paper (Refereed)
Abstract [en]

Industry 4.0 imposes strict requirements on the fifth generation of wireless systems (5G), such as high reliability, high availability, and low latency. Guaranteeing such requirements implies that system failures should occur with an extremely low probability. However, some applications (e.g., training a reinforcement learning algorithm to operate in highly reliable systems or rare event simulations) require access to a broad range of observed failures and extreme values, preferably in a short time. In this paper, we propose IL-GAN, an alternative training framework for generative adversarial networks (GANs), which leverages incremental learning (IL) to enable the generation to learn the tail behavior of the distribution using only a few samples. We validate the proposed IL-GAN with data from 5G simulations on a factory automation scenario and real measurements gathered from various video streaming platforms. Our evaluations show that, compared to the state-of-the-art, our solution can significantly improve the learning and generation performance, not only for the tail distribution but also for the rest of the distribution.

Place, publisher, year, edition, pages
Institute of Electrical and Electronics Engineers (IEEE), 2022
Series
IEEE Global Communications Conference, ISSN 2334-0983
Keywords
generative adversarial networks, rare-event simulations, incremental learning, tail statistics, URLLC
National Category
Computer Sciences
Identifiers
urn:nbn:se:kth:diva-326405 (URN)10.1109/GLOBECOM48099.2022.10001069 (DOI)000922633500161 ()2-s2.0-85146930535 (Scopus ID)
Conference
IEEE Global Communications Conference (GLOBECOM), DEC 04-08, 2022, Rio de Janeiro, BRAZIL
Note

QC 20230502

Available from: 2023-05-02 Created: 2023-05-02 Last updated: 2023-06-12Bibliographically approved
6. Interplay between Distributed AI Workflow and URLLC
Open this publication in new window or tab >>Interplay between Distributed AI Workflow and URLLC
2022 (English)In: 2022 IEEE GLOBAL COMMUNICATIONS CONFERENCE (GLOBECOM 2022), Institute of Electrical and Electronics Engineers (IEEE) , 2022, p. 4208-4213Conference paper, Published paper (Refereed)
Abstract [en]

Distributed artificial intelligence (AI) has recently accomplished tremendous breakthroughs in various communication services, ranging from fault-tolerant factory automation to smart cities. When distributed learning is run over a set of wireless connected devices, random channel fluctuations, and the incumbent services simultaneously running on the same network affect the performance of distributed learning. In this paper, we investigate the interplay between distributed AI workflow and ultra-reliable low latency communication (URLLC) services running concurrently over a network. Using 3GPP compliant simulations in a factory automation use case, we show the impact of various distributed AI settings (e.g., model size and the number of participating devices) on the convergence time of distributed AI and the application layer performance of URLLC. Unless we leverage the existing 5G-NR quality of service handling mechanisms to separate the traffic from the two services, our simulation results show that the impact of distributed AI on the availability of the URLLC devices is significant. Moreover, with proper setting of distributed AI (e.g., proper user selection), we can substantially reduce network resource utilization, leading to lower latency for distributed AI and higher availability for the URLLC users. Our results provide important insights for future 6G and AI standardization.

Place, publisher, year, edition, pages
Institute of Electrical and Electronics Engineers (IEEE), 2022
Series
IEEE Global Communications Conference, ISSN 2334-0983
Keywords
6G, availability, distributed AI, factory automation, federated learning, quality-of-service, URLLC
National Category
Telecommunications
Identifiers
urn:nbn:se:kth:diva-326401 (URN)10.1109/GLOBECOM48099.2022.10000915 (DOI)000922633504041 ()2-s2.0-85146941975 (Scopus ID)
Conference
IEEE Global Communications Conference (GLOBECOM), DEC 04-08, 2022, Rio de Janeiro, BRAZIL
Note

QC 20230502

Available from: 2023-05-02 Created: 2023-05-02 Last updated: 2023-06-12Bibliographically approved
7. Device Selection for the Coexistence of URLLC and Distributed Learning Services
Open this publication in new window or tab >>Device Selection for the Coexistence of URLLC and Distributed Learning Services
2023 (English)In: Article in journal (Refereed) Submitted
National Category
Communication Systems
Identifiers
urn:nbn:se:kth:diva-328764 (URN)
Note

QC 20230613

Available from: 2023-06-12 Created: 2023-06-12 Last updated: 2023-06-13Bibliographically approved

Open Access in DiVA

Summary(3515 kB)459 downloads
File information
File name SUMMARY02.pdfFile size 3515 kBChecksum SHA-512
9e55f3a9b58b1eea937b74c596147e6741fa41b7b3b526c77c6e1716ca27a4fbab72952587536371037002f148cb6fbc2090eeaa23313b8ae4c9246668afbc8c
Type fulltextMimetype application/pdf

Authority records

Ganjalizadeh, Milad

Search in DiVA

By author/editor
Ganjalizadeh, Milad
By organisation
Communication Systems, CoS
Communication SystemsTelecommunications

Search outside of DiVA

GoogleGoogle Scholar
Total: 0 downloads
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

isbn
urn-nbn

Altmetric score

isbn
urn-nbn
Total: 2076 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf