Municipal street pavement maintenance and management practices in Sweden
2024 (English)Licentiate thesis, comprehensive summary (Other academic)
Abstract [en]
A well-functioning street network is pivotal in the socio-economic development of a region. Street networks not only facilitate the movement of people and goods but also allocate space for utility services. Maintaining the street network in good condition and meeting the sustainability targets necessitate implementing optimal street maintenance strategies, leading to an efficient utilization of taxpayers' money.
The objectives of this Licentiate thesis are to analyse pavement management practices and challenges faced by Swedish municipalities, specifically focusing on asphalt concrete (AC) pavements within street networks. Additionally, it seeks to integrate a sustainability tool into pavement maintenance to select maintenance measures that contribute to sustainability goals at the municipal street network management level. Furthermore, the study aims to enhance municipal-level pavement maintenance approaches through the implementation of machine learning (ML) models within a pavement management system (PMS).
Within this context, three individual studies were conducted—two case studies and a survey involving Swedish municipalities. One case study explores sustainability framework application, whereas the other investigates the utilization of ML models in municipal AC pavement maintenance. The survey investigates the practices and challenges faced by municipal street network administrations in AC pavement maintenance.
The sustainability framework SUNRA (Sustainability National Road Administrations) was adopted by the Swedish Transport Administration (STA) with a primary emphasis on promoting sustainability in pavement management on state-level roads. In this study, the framework has been tested, applied and further streamlined to be applicable for setting sustainability targets and monitoring sustainability performances at the project level within both the STA and municipal contexts. The aim was to simplify the framework so it is appropriate for investment, re-investments, maintenance and operation projects and also to enhance its applicability for various users. The study additionally explored how the framework could contribute to sustainability, identified the drivers and barriers for its application, and examined its applicability and adaptability to projects of varying complexities. The results indicate that the framework can be readily utilized and adapted for investment, reinvestment, maintenance, and operational pavement projects during the planning stage. Additionally, it is also suitable for small municipal establishments, construction or reconstruction of residential areas, and regular maintenance.
A web-based questionnaire survey was disseminated to municipalities across the country to gather first-hand insights into the current practices and challenges associated with street maintenance at the municipal level in Sweden. Survey responses were received from 147 of the 290 (51%) municipalities nationwide. The study reveals that predominant pavement distress encompasses potholes, surface unevenness, and alligator cracking, with the most prevalent causes being pavement ageing, heavy traffic, and patches. Likewise, cold climate and population density serve as influential factors contributing to pavement deterioration. The automated survey methods for collecting pavement condition data, such as road surface scanning vehicles and application of commercial PMS, are very limited. On the contrary, the windshield method, a subjective approach for pavement condition assessment, is widely adopted among municipalities utilizing PMS. The allocation of the budget for maintenance, rehabilitation and reconstruction is higher in the northern regions of the country, as well as in densely populated municipalities.
Manually collected pavement condition data for the years 2014 and 2018 were acquired from Skellefteå municipality to assess the performance of ML models in comparison to the observed pavement condition index (PCI) of the street network. In this context, the supervised ML models Linear Regression (LR), Random Forest (RF), and Neural Network (NN) were employed in conjunction with several variable combinations. The RF model, utilizing paired variables of pavement age (A) and pavement distresses (D) data, consistently demonstrated higher accuracy compared to the other models for residential streets. However, RF models constructed with paired variables of A and traffic (T) consistently outperformed other models in the context of non-residential streets. The significance of input variables fluctuates based on the model's complexity and the pavement performance objective. Nonetheless, variable A consistently emerges as the predominant factor for predicting PCI in both residential and non-residential street models.
Further evaluation of the models and simplification of the SUNRA framework to enhance pavement performance and sustainability are recommended.
Abstract [sv]
Ett väl fungerande gatunät är avgörande för den socioekonomiska utvecklingen av en region. Gatunätet underlättar inte bara mobiliteten för människor och varor utan möjliggör också väl fungerande samhällstjänster. Effektiv användning av skattebetalarnas pengar åstadkommas genom att man underhåller gatunätet i gott skick och tillgodoser att man uppnår hållbarhetsmålen. Detta kräver att man implementerar optimala underhållsstrategier.
Syftet med denna studie är att analysera vägunderhållsmetoder för vägbeläggningar inklusive utmaningar som svenska kommuner står inför. Särskilt fokus är på asfaltbeläggningar inom gatunätet. Vidare ingår att integrera ett hållbarhetsverktyg för vägunderhåll som möjliggör att man kan välja underhållsåtgärder som bidrar till att gatunätsförvaltningen kan nå kommunala hållbarhetsmålen. Studien syftar slutligen till att förbättra kommunala gatuunderhållsstrategier genom att implementera maskininlärningsmodeller inom ett vägförvaltningssystem (PMS).
Inom Licentiatavhandlingen genomfördes tre studier – två fallstudier och en enkät med svenska kommuner. En fallstudie utforskar tillämpningen av hållbarhetsramverk, medan den andra undersöker användningen av maskininlärningsmodeller vid kommunalt underhåll av asfaltbeläggningar. Enkäten undersöker praxis och utmaningar för kommunala gatunätsförvaltningar vid underhåll av asfaltbeläggningar.
Hållbarhetsverktyget SUNRA (Sustainability National Road Administrations) anpassades till Trafikverket för att främja hållbarhet inom vägförvaltning på statliga vägar. I denna studie har verktyget testats, tillämpats och förfinats för att sätta hållbarhetsmål och övervaka hållbarhetsprestanda på projektbasis inom både Trafikverket och kommunala sammanhang. Målet var att förenkla verktyget så att det passar för investering, återinvestering, underhåll och driftsprojekt och även för att förbättra användbarheten för olika användare. Vidare studerades hur verktyget kunde bidra till hållbarhet, identifiera drivkrafter och hinder för dess tillämpning, användbarhet och anpassningsbarhet till projekt med varierande komplexitet. Resultaten indikerar att verktyget kan användas och anpassas för investeringar, återinvesteringar, underhåll och driftsprojekt under planeringsstadiet. Det är också lämpligt för små kommunala etableringar, konstruktion eller ombyggnad av bostadsområden och regelbundet underhåll.
Den webbaserad enkätundersökning skickades ut till alla Svenska kommuner (290 stycken) för att få information om aktuell praxis och utmaningar för gatuunderhåll på kommunal nivå. Svar på enkäten mottogs från (148 stycken) 51 procent av kommunerna. Studien visar att vanliga vägbeläggningsproblem inkluderar slaghål, ojämnheter och krackelering, där de vanligaste orsakerna är åldrande beläggning, belastning från tung trafik och tidigare åtgärder gjorda i asfaltsytan. Ett kallt klimat och befolkningstäthet är viktiga faktorer som bidrar till vägbeläggningsförsämringen. Användning av automatiska metoder för insamling av vägbeläggningars tillstånd med vägytemätningsfordon och kommersiella PMS är mycket begränsad. Istället används främst subjektiva okulära besiktningsmetoder vid bedömningen av tillståndet bland de kommuner som använder PMS. Budgettilldelningen för underhåll och ombyggnad är högre i de norra regionerna i landet samt i tätbefolkade kommuner.
Manuellt insamlade vägbeläggningsdata för åren 2014 och 2018 från Skellefteå kommun användes för att bedöma möjligheterna med modeller framtagna med maskininlärning jämfört med det uppmätta beläggningsindexet (PCI). Maskininlärningsmodellerna Linjär Regression (LR), Random Forest (RF) och Neural Network (NN) tillsammans med flera variabelkombinationer testades. RF-modellen, som använder parvisa variabler av åldrande av vägbeläggning (A) och beläggningsskador (D) data, visade, för villagator, konsekvent högre precision jämfört med de andra modellerna. Däremot presterade RF-modeller konstruerade med parvisa variabler av A och trafik (T) konsekvent bättre precision, för icke-villagator (dvs. huvudgator, matargator och industrigator) än andra modeller. Betydelsen av ingående variabler varierar beroende på modellens komplexitet och det avsedda vägbeläggningsmålet. Trots det framträder variabel A konsekvent som den dominerande faktorn för att förutsäga beläggningsskick i modeller för både villa- och icke-villagator.
Vidare utvärdering av modellerna och förenkling av SUNRA-verktyget för att förbättra vägbeläggningens prestanda och hållbarhet rekommenderas.
Place, publisher, year, edition, pages
Stockholm: KTH Royal Institute of Technology, 2024. , p. 56
Series
TRITA-ABE-DLT ; 249
Keywords [en]
municipalities, street maintenance, pavement management systems, questionnaire, pavement deterioration, cold climate, performance prediction models, machine learning, random forest, pavement condition index
National Category
Infrastructure Engineering
Research subject
Civil and Architectural Engineering, Building Materials
Identifiers
URN: urn:nbn:se:kth:diva-345320ISBN: 978-91-8040-890-5 (print)OAI: oai:DiVA.org:kth-345320DiVA, id: diva2:1851090
Presentation
2024-05-06, B1, Brinellvägen 23, KTH Campus, public video conference link https://kth-se.zoom.us/j/61768512331, Stockholm, 13:00 (English)
Opponent
Supervisors
Note
QC 20240412
Research funders:
Skellefteå municipality
Mistra InfraMaint Project 1.8 (DIA 2016/28)
2024-04-122024-04-122024-04-24Bibliographically approved
List of papers