Mechanical connections using birch plywood as gusset plates in timber structures
2024 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]
The use of steel gusset plates in connections for timber structures increases the environmental impact of the structure. Wood-based connections could, in this case, be ideal substitutes providing lower environmental impact as well as both better workability and mountability. Birch (Betula spp.) is a hardwood species widespread in the Northern Hemisphere, and plywood made of birch possesses superior strength and stiffness performance compared with plywood made of softwood, making the former promising for structural use.
One idea, in this context, is to use birch plywood in different timber connections, such as truss nodes, or moment-resisting connections, for example, spliced beam joints, beam-column joints, and portal frame corner joints. Such new types of connections could result in significant advantages in terms of a low so-called carbon footprint as well as ease of prefabrication and on-site assembly. However, the feasibility of utilizing birch plywood in structural design needs to be investigated in-depth. In particular, there is a lack of knowledge regarding the mechanical behavior and failure mechanism of birch plywood for different load cases.
The aim of this thesis is to produce new knowledge necessary for designing mechanical connections using birch plywood as gusset plates in timber structures. The specific objectives were, first, to characterize the embedment behavior of single steel fasteners in birch plywood by mechanical tests and analytical models, and second, with further mechanical tests and modeling, to investigate the failure behavior and mechanism in birch plywood gusset plates with multiple fasteners for different load cases.
Embedment tests with steel dowels demonstrated a load-to-face grain angle dependence of the strength and stiffness values, although less pronounced compared with other in-plane mechanical properties of the plywood. A new embedment strength formula for birch plywood that considers both the load-to-face grain angle and the dowel diameter is proposed.
The failure mechanism of birch plywood in spliced beam joints under pure bending moment was examined both experimentally and theoretically. As a result, new analytical models based on Eurocode 5 formulas and the fastener group’s polar moment of inertia resistance are proposed. Based on experiments on glulam frames, the failure mechanism of birch plywood in connections under uniaxial tension loads was also studied. In this case, results verified that the load spread (Whitmore effective width) phenomenon exists in birch plywood.
The design of birch plywood connections loaded in uniaxial tension was further addressed regarding the influence of fastener patterns and face-grain orientations. The magnitude of spread angles in the classic and modified load spread models was determined by conducting tests on plywood with increasing widths. Their validity was examined by predicting the capacities of the aforementioned uniaxial tension joints. Furthermore, frame corner joints consisting of glulam and birch plywood were studied, where the analytical formulas for predicting the load-bearing capacities of the fastener group, the glulam member, and the plywood plates were validated.
For future work, it is suggested that full-scale experiments be conducted on both trusses and portal frames to further validate the design models and optimize the design of connections using birch plywood and mechanical fasteners.
Abstract [sv]
Användningen av stålplåtar (laskar) i förbandslösningar för träkonstruktioner ökar konstruktionens miljöpåverkan. Träbaserade förband kan i detta fall vara idealiska substitut som ger lägre miljöpåverkan samt både bättre bearbetbarhet och monterbarhet. Björk (Betula spp.) är ett lövträslag med stor utbredning på norra halvklotet, och plywood gjord av björk har överlägsen styrka och styvhet jämfört med plywood gjord av barrträ vilket gör den förra lovande för användning i lastbärande konstruktioner.
En idé i detta sammanhang är att utnyttja björkplywood i olika förbandslösningar för träkonstruktioner, såsom fackverksnoder, eller momentstyva förband, exempelvis balkskarvar, pelare-balk-förband och ramhörnförband. Sådana nya typer av förband kan resultera i betydande fördelar i form av lågt så kallat koldioxidavtryck samt enkel prefabricering och montering på plats. Möjligheten att använda björkplywood i konstruktioner behöver dock undersökas på djupet. I synnerhet saknas kunskap kring det mekaniska beteendet och brottmekanismen för björkplywood för olika lastfall.
Syftet med denna avhandling är att producera ny kunskap som behövs för att konstruera mekaniska förband med björkplywood som laskar i träkonstruktioner. De specifika målen var för det första att karakterisera hålkantsbeteendet för enskilda fästdon av stål i björkplywood genom mekaniska tester och analytiska modeller, och för det andra, med ytterligare mekaniska tester och modellering, att undersöka brottbeteendet och -mekanismen i björkplywood med flera fästdon för olika lastfall.
Hålkantsförsök med ståldymlingar visade att hållfasthets- och styvhetsvärdena beror på belastningsriktingen relativt ytfanerens fiberriktning, även om detta var mindre tydligt jämfört med andra mekaniska egenskaper i planet för plywooden. En ny formel för hålkantshållfasthet för björkplywood som tar hänsyn till både belastningsvinkeln och dymlingsdiametern föreslås.
Brottmekanismen hos björkplywood i balkskarvar under rent böjmoment undersöktes både experimentellt och teoretiskt. Som ett resultat av undersökningen föreslås nya analytiska modeller baserade på formler i eurokodens del 5 och fästdongruppens motstånd för polärt tröghetsmoment. Baserat på experiment på limträramar studerades också brottmekanismen hos björkplywood i förband under enaxliga dragbelastningar. I detta fall verifierade resultaten att fenomenet lastspridning (effektiv bredd enligt Whitmore) existerar i björkplywood.
Utformningen av förband med björkplywood belastade i enaxlig spänning studerades ytterligare med avseende på inverkan av fästdonmönster och orienteringen av ytfanerens fiberrikning. Storleken på spridningsvinklarna i de klassiska och modifierade lastspridningsmodellerna bestämdes genom att utföra tester på plywoodskivor med ökande bredd. Deras giltighet undersöktes genom att förutsäga kapaciteten hos de ovannämnda enaxligt dragbelastade förbanden. Vidare studerades ramhörnförband bestående av limträ och björkplywood, där de analytiska formlerna för att förutsäga bärförmågan för fästdonsgruppen, limträelementet och plywoodskivorna validerades.
Som framtida arbete föreslås att fullskaliga experiment med både fackverk och portalramar genomförs för att ytterligare validera designmodellerna och för att optimera utformningen av förband med björkplywood och mekaniska fästdon.
Place, publisher, year, edition, pages
Stockholm, Sweden 2024: KTH Royal Institute of Technology, 2024. , p. 102
Series
TRITA-ABE-DLT ; 2410
Keywords [en]
Birch plywood, mechanical fasteners, load-to-face grain angle, gusset plates, truss structures, portal frame structures, load spread angle.
National Category
Civil Engineering
Research subject
Civil and Architectural Engineering, Building Materials
Identifiers
URN: urn:nbn:se:kth:diva-345772ISBN: 978-91-8040-898-1 (print)OAI: oai:DiVA.org:kth-345772DiVA, id: diva2:1852623
Public defence
2024-05-17, Kollegiesalen, Brinellvägen 8, KTH Campus, https://kth-se.zoom.us/j/69481823422, Stockholm, 10:00 (English)
Opponent
Supervisors
Note
QC240425
2024-04-252024-04-182024-04-25Bibliographically approved
List of papers