Algorithms and Models in Nanopore DNA Sequencing: Advanced Decoding and Modeling with Hierarchical Hidden Markov Models
2024 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]
Within less than four decades, the nanopore sequencing technology accelerated from an implausible idea scribbled on a notebook page to one of the decisive contributors to the complete sequence of the human genome. Its rapid evolution, particularly in recent years, is driven not only by its inherent innovation of the nanopores but also by synergistic advancements in complementary fields, such as GPU acceleration and deep neural networks, as well as cross-disciplinary influences from domains like speech recognition. However, during this rapid advancement, certain methods within nanopore sequencing remain relatively unexplored. This oversight has the potential to create bottlenecks in the technology's further development.
In this thesis work, we delve into these uncharted areas, seeking to fill critical gaps and branch the technology into new frontiers. Our objective is to unleash its potential, enabling further breakthroughs in genomic research and beyond.
Through our research, we have developed two novel algorithms and two innovative models tailored to address these under-explored aspects of nanopore sequencing. The two algorithms, the GMBS and the LFBS, both belonging to the MBS group, offer innovative solutions to the challenging decoding problems inherent in HHMMs. They are two distinct variations tailored to different scenarios. While the GMBS is specifically suited for decoding lengthy sequences, such as those encountered in long-read basecalling, the LFBS is optimized for parallel programming and excels in processing short-length sequences.
The two innovative models developed in this research, each leveraging variations of HHMMs and employing an end-to-end approach, exhibit distinguished structures. The first model, a hybrid of EDHMM and DNN, showcases the effectiveness of integrating both knowledge-driven and data-driven techniques. In contrast, the second model, a custom-designed Helicase HMM, draws inspiration from pioneering studies on motor proteins found in sequencing devices. With its elaborate hierarchical state architecture boasting over five million emission states, this model offers a comprehensive feature space comparable to its predecessor.
Abstract [sv]
Inom mindre än fyra decennier har nanopore-sekvenseringsteknologin accelererat från en otrolig idé som skissades i en antckningsbok till en avgörande teknologi som bidragit till den kompletta sekvensensieringen av det mänskliga genomet. Denna snabba utveckling, särskilt under de senaste åren, drivs inte bara av innovation kring nanoporer utan också av synergistiska framsteg inom kompletterande områden, såsom GPU-acceleration och djupa neurala nätverk, samt tvärvetenskapligt inflytande från domäner som taligenkänning. Under denna snabba utveckling har do vissa metoder inom nanopore sekvensering förblivit relativt outforskade. Detta förbiseende riskerar att skapa flaskhalsar i teknologins vidareutveckling.
I denna avhandling utforskar vi dessa outforskade områden, i syfte att fylla kritiska luckor och utveckla tekniken mot nya fronter. Vårt mål är att frigöra dess fulla potential och möjliggöra ytterligare genombrott inom genomisk forskning och därutöver.
Som del av vår forskning har vi utvecklat två nya algoritmer och två innovativa modeller anpassade för att adressera dessa underutredda aspekter av nanopore sekvensering. De två algoritmerna, GMBS och LFBS, som är instanser av det mer generella ramverket av MBS-algorithmer (\emph{eng.} marginalised beam search), erbjuder innovativa lösningar på de utmanande avkodningsproblemen som är inneboende i HHMM:er. De är två distinkta variationer anpassade för olika scenarier. Medan GMBS är speciellt lämpad för avkodning av långa sekvenser, såsom de som stöts på vid läsning av långa sekvenser, är LFBS optimerad för parallell programmering och utmärker sig i bearbetning av korta sekvenser.
De två innovativa modellerna som utvecklats i denna forskning, vilka båda utnyttjar variationer av HHMM:er och använder en ``end-to-end''-ansats, uppvisar distinkta strukturer. Den första modellen, en hybrid av EDHMM och DNN, visar effektiviteten av att integrera både kunskapsdrivna och datadrivna tekniker. I kontrast till detta, drar den andra modellen, en anpassad Helicase HMM, inspiration från pionjärstudier om motorproteiner som finns i sekvenseringsenheter. Med sin detaljerade hierarkiska tillståndsarkitektur med över fem miljoner emissivtillstånd, erbjuder denna modell en omfattande egenskapsrymd jämfört med sina föregångare.
Place, publisher, year, edition, pages
KTH Royal Institute of Technology, 2024. , p. 147
Series
TRITA-EECS-AVL ; 2024:40
National Category
Bioinformatics (Computational Biology)
Research subject
Electrical Engineering
Identifiers
URN: urn:nbn:se:kth:diva-346051ISBN: 978-91-8040-914-8 (print)OAI: oai:DiVA.org:kth-346051DiVA, id: diva2:1855511
Public defence
2024-05-24, F3, Lindstedtsvägen 26, Stockholm, 13:00 (English)
Opponent
Supervisors
Note
QC 20240502
Hybrid attendance: https://kth-se.zoom.us/j/66248893067
2024-05-022024-05-012024-06-05Bibliographically approved
List of papers