kth.sePublications
Planned maintenance
A system upgrade is planned for 10/12-2024, at 12:00-13:00. During this time DiVA will be unavailable.
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Monolithic Fabrication of Metal‐Free On‐Paper Self‐Charging Power Systems
KTH, School of Electrical Engineering and Computer Science (EECS), Electrical Engineering, Electronics and Embedded systems.ORCID iD: 0000-0001-5217-9936
KTH, School of Electrical Engineering and Computer Science (EECS), Electrical Engineering, Electronics and Embedded systems.ORCID iD: 0000-0003-2381-144X
KTH, School of Electrical Engineering and Computer Science (EECS), Electrical Engineering, Electronics and Embedded systems.ORCID iD: 0009-0006-2695-180X
KTH, School of Electrical Engineering and Computer Science (EECS), Electrical Engineering, Electronics and Embedded systems.
Show others and affiliations
2024 (English)In: Advanced Functional Materials, ISSN 1616-301X, E-ISSN 1616-3028Article in journal (Refereed) Published
Abstract [en]

Self-charging power systems (SCPSs) are envisioned as promising solutions for emerging electronics to mitigate the increasing global concern about battery waste. However, present SCPSs suffer from large form factors, unscalable fabrication, and material complexity. Herein, a type of highly stable, eco-friendly conductive inks based on poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS) are developed for direct ink writing of multiple components in the SCPSs, including electrodes for miniaturized spacer-free triboelectric nanogenerators (TENGs) and microsupercapacitors (MSCs), and interconnects. The principle of “one ink, multiple functions” enables to almost fully print the entire SCPSs on the same paper substrate in a monolithic manner without post-integration. The monolithic fabrication significantly improves the upscaling capability for manufacturing and reduces the form factor of the entire SCPSs (a small footprint area of ≈2 cm × 3 cm and thickness of ≈1 mm). After pressing/releasing the TENGs for ≈79000 cycles, the 3-cell series-connected MSC array can be charged to 1.6 V while the 6-cell array to 3.0 V. On-paper SCPSs are promising to serve as lightweight, thin, sustainable, and low-cost power supplies. 

Place, publisher, year, edition, pages
Wiley , 2024.
National Category
Electrical Engineering, Electronic Engineering, Information Engineering
Identifiers
URN: urn:nbn:se:kth:diva-346177DOI: 10.1002/adfm.202313506ISI: 001164374600001Scopus ID: 2-s2.0-85185153516OAI: oai:DiVA.org:kth-346177DiVA, id: diva2:1855977
Funder
The Swedish Foundation for International Cooperation in Research and Higher Education (STINT), STINTThe Swedish Foundation for International Cooperation in Research and Higher Education (STINT), CH2017‐7284Swedish Research Council, 2019‐04731
Note

QC 20240514

Available from: 2024-05-03 Created: 2024-05-03 Last updated: 2024-05-14Bibliographically approved
In thesis
1. Functional Materials for Sustainable Energy Harvesting and Energy Storage Devices
Open this publication in new window or tab >>Functional Materials for Sustainable Energy Harvesting and Energy Storage Devices
2024 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

The booming evolution of portable, wearable electronic devices, wireless sensors, and integrated microelectronics has stimulated the need for miniaturized power supply modules. Energy harvesters, which harness the environmental energy for electricity use, and micro super capacitors (MSCs),known for the small form factor and rapid power delivery, provide energy efficient solutions. Meanwhile, the demand for sustainable development hasdriven the research towards environmental and ecological-friendly energy solutions. In light of this, utilizing paper as a substrate offers a promising avenue due to its sustainability, lightweight nature, disposability, and availability. Integrating energy harvesters and micro super capacitors into on paper micro-power sources holds the potential for ready-to-use smartelectronics, such as biosensors for detection and diagnostics.

Nonetheless, the progress of on-paper MSCs is still in its infancy encountering challenges in appropriate material selection, structure, and fabrication design. 2D material MXene and conducting polymer PEDOT:PSS hold promises for on-paper MSCs thanks to their hydrophilic nature and excellent electrochemical properties. In terms of energy harvesting units,hydrovoltaic technologies that generate electricity from water movement offer a sustainable energy solution, while triboelectric nanogenerators (TENGs) harness the ubiquitous mechanical energy in the environment to produce electrical power. Such electric energy can be directly utilized or stored with the assistance of MSCs for later consumption. However, integrating energy harvesting and storage components on paper involves complex material and fabrication requirements. This thesis aims at enhancing the rate capability (thecharge and discharge ability at high rates while maintaining the storage capacity) of on-paper MSCs, advancing the development of hydrovoltaic and TENGs energy harvesters and eventually integrating TENGs and MSCs to a non-paper power supply.

The first part (Paper I and Paper II) of this thesis presents the improvements in the rate performance (the ability to maintain the efficiency and capacityunder different rates) of the on-paper MSCs. Introducing conducting polymerpoly(3,4-ethylenedioxythiophene) polystyrene sulfonate (PEDOT:PSS) to othermaterials is a typical approach to improve the conductivity of coatings/patternson paper. However, due to the cancel-out effect caused by opposite carrier typesof PEDOT:PSS and Ti3C2Tx, the blend of both showcases a lowered electrical conductivity, thus degrading rate performance. In the first study, a heterogeneous structure design was proposed to tackle this issue. The high efficiency and through put of direct ink writing, along with the minimal damageon the paper substrate of fem to second laser scribing technologies, enable effective MSC fabrication on paper, resulting in stacked-structure MSCs that exhibit excellent areal capacitance of 5.7 mF/cm2 at a high scan rate of 1000mV/s without metallic current collectors. In the second study, the rateperformance was further improved by mixing another type of MXene, Ti2CTx,with PEDOT:PSS which share the same carrier type, avoiding the complex structure and facilitating the printing process. The composite exhibits increased conductivity and an areal capacitance of 30.2 mF/cm2, over fivefold higher than the PEDOT/ Ti3C2Tx heterogeneous structure. The composite ink also enables the efficient fabrication of MSC arrays on paper, which can be charged and discharged at an ultrahigh scan rate of 10 V/s and can work at an extended stable voltage window of 6 V, indicating the excellent scalability of thePEDOT:PSS-Ti2C composite-based electrode.

The second part (Paper III and Paper IV) of this thesis focuses on the development of energy harvesters. Current monolayer graphene-based hydrovoltaic energy harvesters face challenges in fabrication complexity and low output power. To eliminate these limitations, a hydrovoltaic energyharvester based on the composite films of electrochemically exfoliated graphene and TiO2 nanoparticles was developed through a simple doctor blading method. The device delivers a peak voltage of 75 mV and a maximized output power of 1.8 μW at low waving velocities. Besides, tribo electric nanogenerators (TENGs) which convert mechanical movements to electric energy can produce higher instantaneous voltage and can be developed on paper with printing techniques. Thus, the on-paper spacer-free TENGs withgood working stability and improved compactness were fabricated. Moreover, by employing PEDOT:PSS as both electrodes in TENGs and MSCs, TENGs and MSCs can be directly printed on paper, and integrated with a small chip rectifier, achieving the fully printed on-paper micro-power supply. In this preliminary integrated system, the mechanical energy is continuously harvested and converted to electric energy by a TENG, and simultaneously stored in the MSC array, showing the potential to power paper electronics.

In conclusion, this thesis unveils the development of sustainable on-papermicrosupercapacitors with outstanding rate performance and two energyharvesters that convert renewable energy into electricity. In the end, the thesis finalizes with a primary integration of harvesting and storage parts into an on paper power supply.

Abstract [sv]

Den snabba utvecklingen av mindre, bärbara, elektroniska apparater medtrådlösa sensorer, integrerade kretsar och displayer har tvingat fram ett behov av små strömförsörjningsenheter som kan driva denna typ av elektronikprodukter. En möjlighet är att använda miniatyriserade ”energiskördare” som omvandlar mekanisk, termisk eller annan energi som genereras i omgivningen till elektrisk energi. Exempel påsådan energi som finns i vår närmiljö kan vara solljus, vågrörelse, kroppsrörelse och kroppsvärme. Genom att konstruera t ex piezo- eller triboelektriskageneratorer, som tar upp tryck och rörelse och omvandlar detta till elektrisk spänning, kan man generera en ström som skulle kunna räcka till för att driva en liten elektrisk krets. Funktionen av en sådan strömförsörjningsenhet kan också förbättras genom att addera ett batteri som kan lagra den genererade elektriska energin, t ex genom en liten kondensator med lång tidskonstant, en sk mikrosuperkondensator. Denna avhandling visar olika möjligheter att bygga användbara små generatorer och kraftmoduler som uppfyller de tekniska kraven för effektförsörjning av bärbar elektronik. I avhandling strävas också efter att uppfylla hållbarhetsmålen och att minska miljöbelastningen genom att använda ”gratisenergi” i vår omgivning och även utnyttja material och processer som har minimal negativ påverkan på miljön. Den framtagna tekniken baseras på att trycka elektriska komponenter och kretsar på papper, vilket uppfyller kraven på miljövänlighet och hållbarhet. Produkten kan också göras liten, har låg vikt och är böjlig, vilket gör den väl lämpad för bärbara applikationer. Den blir också billig att tillverka och, genom att miljövänliga material används, kan den slängas eller brännas utan miljöpåverkan, till skillnad från mycket av den elektronik som vi använder idag.

Inledningsvis behandlas framtagningen av ett ledande bläck som också har nödvändiga egenskaper för att kunna tryckas på papper. Aktiva substanser ibläcket är 2D-materialet MXene, som har kemiska formeln Mn+1XnTx, där M är övergångsmetall, X är kol och/eller kväve och T representerar terminering, t ex-O, -F, -OH, eller liknande. Bäst resultat uppnåddes med Ti2CTx, som blandades med den ledande polymeren PEDOT:PSS (poly (3,4-etylendioxytiosfen):polystyrensulfonat). Detta bläck användes både för att tillverka mikrosuperkondensatorer (”microsupercapacitors”, MSCs), samt elektroder och elektriska anslutningar på pappret. Kapacitansen per area enet för denna MSC var 30 mF/cm2, vilket är bland de högsta värdena som hittills har presenterats för motsvarande komponenter. Arbetet med MSC och detledande bläcket beskrivs i publikationerna I och II. Senare delen av avhandlingen beskriver olika former av energiskördare, där publikation III beskriver en sk hydrovoltaisk generator som drivs av vågkraft och baseras på kombinationen TiO2 och grafen. Denna typ av generator visade sig fungera utmärkt, men gav relativt lågt uteffekt. Avhandlingens sista publikation beskriver en prototyp av en komplett strömförsörjningsenhet baserad på en triboelektrisk nanogenerator (TENG), tryckt på papper och kopplad till den tidigare beskrivna MSC. Hela systemet inryms på ca 2 cm2 papper och kan försörja en display till ett tidtagarur.

Place, publisher, year, edition, pages
Sweden: KTH Royal Institute of Technology, 2024. p. 98
Series
TRITA-EECS-AVL ; 2024:41
Keywords
on-paper electronics, printed electronics, microsupercapacitor, energy harvesting, MXene, graphene, PEDOT:PSS, elektronik på papper, tryckt elektronik, microsupercapacitor, energiskörd, MXene, graphene, PEDOT:PSS
National Category
Other Materials Engineering
Identifiers
urn:nbn:se:kth:diva-346179 (URN)978-91-8040-916-2 (ISBN)
Public defence
2024-05-31, Ka-Sal C, Kistagången 16, Stockholm, 13:00 (English)
Opponent
Supervisors
Funder
Swedish Research Council, 2019‐04731Olle Engkvists stiftelse, 2014/799European Commission, 101070255, REFORM
Note

QC 20240508

Available from: 2024-05-08 Created: 2024-05-03 Last updated: 2024-05-21Bibliographically approved

Open Access in DiVA

No full text in DiVA

Other links

Publisher's full textScopus

Authority records

Su, YingchunXue, HanFu, YujieChen, ShiqianLi, ZhengLi, LengwanHammar, MattiasHallén, AndersLi, Jiantong

Search in DiVA

By author/editor
Su, YingchunXue, HanFu, YujieChen, ShiqianLi, ZhengLi, LengwanHammar, MattiasHallén, AndersNordell, NilsLi, Jiantong
By organisation
Electronics and Embedded systemsBiocompositesWallenberg Wood Science CenterElectrum Laboratory, ELAB
In the same journal
Advanced Functional Materials
Electrical Engineering, Electronic Engineering, Information Engineering

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 205 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf