kth.sePublications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Social interactions for a sustainable lifestyle: The design of an experimental case study
KTH, School of Electrical Engineering and Computer Science (EECS), Intelligent systems, Decision and Control Systems (Automatic Control).ORCID iD: 0000-0002-6367-6302
KTH, School of Industrial Engineering and Management (ITM), Energy Technology, Applied Thermodynamics and Refrigeration.ORCID iD: 0009-0002-3546-8933
KTH, School of Architecture and the Built Environment (ABE), Sustainable development, Environmental science and Engineering, Strategic Sustainability Studies.
KTH, School of Architecture and the Built Environment (ABE), Sustainable development, Environmental science and Engineering, Strategic Sustainability Studies.ORCID iD: 0000-0003-1451-4187
Show others and affiliations
2023 (English)Conference paper, Published paper (Refereed)
Abstract [en]

Every day we face numerous lifestyle decisions, some dictated by habits and some more conscious, which may or may not promote sustainable living. Aided by digital technology, sustainable behaviors can diffuse within social groups and inclusive communities. This paper outlines a longitudinal experimental study of social influence in behavioral changes toward sustainability, in the context of smart residential homes. Participants are residing in the housing on campus referred to as KTH Live-In Lab, whose behaviors are observed w.r.t. key lifestyle choices, such as food, resources, mobility, consumption, and environmental citizenship. The focus is on the preparatory phase of the case study and the challenges and limitations encountered during its setup. In particular, this work proposes a definition of sustainability indicators for environmentally significant behaviors, and hypothesizes that, through digitalization of a household into a social network of interacting tenants, sustainable living can be promoted. Preliminary results confirm the feasibility of the proposed experimental methodology.

Place, publisher, year, edition, pages
Elsevier BV , 2023. p. 657-663
Keywords [en]
cyber-physical-human systems, experimental study, Live-In Lab, smart homes, social networks, Sustainable behavior
National Category
Other Social Sciences
Identifiers
URN: urn:nbn:se:kth:diva-349826DOI: 10.1016/j.ifacol.2023.10.1642ISI: 001196708400105Scopus ID: 2-s2.0-85166557947OAI: oai:DiVA.org:kth-349826DiVA, id: diva2:1881634
Conference
22nd IFAC World Congress, Yokohama, Japan, Jul 9 2023 - Jul 14 2023
Note

Part of ISBN 9781713872344

QC 20240703

Available from: 2024-07-03 Created: 2024-07-03 Last updated: 2025-09-14Bibliographically approved
In thesis
1. Towards Human-in-the-Loop Smart Buildings: Data-Driven Predictive Control and Occupant Modeling
Open this publication in new window or tab >>Towards Human-in-the-Loop Smart Buildings: Data-Driven Predictive Control and Occupant Modeling
2025 (English)Licentiate thesis, comprehensive summary (Other academic)
Abstract [en]

The building sector accounts for almost 40% of the European Union’s total energy consumption, and a large portion of this consumption is related to heating, ventilation, and air-conditioning (HVAC) systems. In addition to HVAC loads, occupant behavior plays a critical role in building energy use. However, traditional energy performance analyses typically model occupants as passive recipients of indoor conditions rather than as active participants who influence building performance. Such simplifications can lead to notable discrepancies between predicted and actual energy use. Motivated by this challenge, this thesis develops robust data-driven predictive control methods that can explicitly account for uncertainties. This method can be useful at a later stage for including the impact of occupant behaviors in smart building control. Moreover, occupant behavior models are developed by leveraging high-resolution measurements from the KTH Live-In Lab to quantify their impact on heating energy consumption. Finally, it is investigated how social interactions among occupants can improve sustainable behaviors and further reduce building energy use. 

The first technical contribution in this thesis is to design a data-driven, robust tube-based zonotopic predictive-control (TZPC) approach for unknown discrete-time linear systems with bounded uncertainties, using input–state data. We prove the recursive feasibility, robust constraint satisfaction, and the robust exponential stability of the closed-loop system. This approach is then extended to unknown nonlinear systems by exploiting reachability analysis and designing a controller that relies solely on input–output data. We prove that the proposed nonlinear zonotopic predictive control (NZPC) approach satisfies the constraints under any admissible bounded uncertainties.

The thesis’s second contribution examines how physical environmental and categorical variables influence occupants’ window operation in a Swedish residential building at the KTH Live-In Lab, based on four years of winter data. Using a multiple logistic regression approach, twelve distinct behavior patterns are modeled. These models are integrated into a digital model of the building to quantify their effect on heating demand. Simulation results indicate that variations in window operation patterns can increase heating energy consumption by up to three times compared to a baseline scenario without window interaction. 

Finally, this thesis includes a longitudinal experimental study with selected occupants at the KTH Live-In Lab, investigating the influence of social interactions on promoting sustainable behaviors and reducing energy consumption. The study highlights that digitalizing households into socially interconnected networks effectively improves sustainable lifestyle choices, such as optimized resource use and consumption.

Abstract [sv]

Fastigheter står för nästan 40% av den Europeiska unionens totala energiförbrukning - varav en stor del är kopplad till värme-, ventilations- och luftkonditioneringssystem (HVAC). Utöver de oundvikliga lasterna från HVAC spelar de boendes beteende en avgörande betydelse för byggnaders energianvändning. Trots detta brukar traditionella analyser av energiprestanda modellera de boende som passiva snarare än aktiva aktörer som påverkar inomhusklimatet och i förlängningen byggnadens prestanda. Sådana förenklingar kan leda till betydande avvikelser mellan uppskattad och faktisk energianvändning. Motiverat av denna utmaning utvecklar detta arbete robusta datadrivna prediktiva styrmetoder som explicit tar hänsyn till osäkerheter. Dessa metoder kan vara användbara i ett senare skede för att inkludera effekten av de boendes beteende i smarta byggnaders styrsystem. Dessutom utvecklas modeller för de boendes beteende genom att utnyttja högupplösta mätningar från KTH Live-In Lab för att kvantifiera deras påverkan på energiförbrukningen för uppvärmning. Slutligen undersöks hur sociala interaktioner mellan de boende kan främja hållbara beteenden och ytterligare minska byggnaders energianvändning.

Avhandlingens första tekniska bidrag är en datadriven, robust “tube''-baserad zonotopisk prediktiv styrmetod (TZPC) utformad för okända diskreta linjära system med begränsade osäkerheter, baserad på indata och tillståndsdata. Vi visar rekursiv lösbarhet, robust tillfredsställelse av bivillkor samt robust exponentiell stabilitet av det återkopplade systemet. Metoden utvidgas sedan till okända icke-linjära system genom att använda “reachability analysis” och utforma styrsystem som enbart bygger på indata och utdata. Vi bevisar att den föreslagna icke-linjära zonotopbaserade prediktiva styrningen (NZPC) uppfyller bivillkoren under alla tillåtna störningar med begränsat avvikelseintervall.

Avhandlingens andra bidrag undersöker hur fysiska miljövariabler och kategoriska variabler påverkar boendes beteende i en svensk bostad vid KTH Live-In Lab, baserat på fyra års vinterdata. Med hjälp av multipel logistisk regressionsanalys modelleras tolv distinkta beteendemönster. Dessa modeller integreras i en digital byggnadsmodell för att kvantifiera deras effekt på uppvärmningsbehovet. Simuleringsresultaten visar att variationer i fönsteröppningsmönster kan öka energianvändningen för uppvärmning upp till tre gånger jämfört med ett referensscenario som inte tar hänsyn till fönsterinteraktion.

Avslutningsvis innehåller denna avhandling en longitudinell experimentell studie med utvalda boenden vid KTH Live-In Lab,  där vi undersöker hur sociala interaktioner påverkar främjandet av hållbara beteenden och minskad energianvändning. Studien visar att digitalisering av hushåll till socialt sammankopplade nätverk effektivt kan främja hållbara livsstilsval, såsom optimerad resursanvändning och konsumtion.

Place, publisher, year, edition, pages
Stockholm: Kungliga Tekniska högskolan, 2025. p. 55
Series
TRITA-ITM-AVL ; 2025:37
National Category
Energy Engineering Control Engineering
Research subject
Energy Technology
Identifiers
urn:nbn:se:kth:diva-369711 (URN)978-91-8106-373-8 (ISBN)
Presentation
2025-10-10, K1 / https://kth-se.zoom.us/s/63644880139, Teknikringen 56, Stockholm, 10:00 (English)
Opponent
Supervisors
Available from: 2025-09-16 Created: 2025-09-14 Last updated: 2025-10-07Bibliographically approved

Open Access in DiVA

No full text in DiVA

Other links

Publisher's full textScopus

Authority records

Fontan, AngelaFarjadnia, MahsaLlewellyn, JosephKatzeff, CeciliaMolinari, MarcoCvetkovic, VladimirJohansson, Karl H.

Search in DiVA

By author/editor
Fontan, AngelaFarjadnia, MahsaLlewellyn, JosephKatzeff, CeciliaMolinari, MarcoCvetkovic, VladimirJohansson, Karl H.
By organisation
Decision and Control Systems (Automatic Control)Applied Thermodynamics and RefrigerationStrategic Sustainability StudiesResources, Energy and Infrastructure
Other Social Sciences

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 179 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf