Prompt-tuning and instruction-tuning of language models have exhibited significant results in few-shot Natural Language Processing (NLP) tasks, such as Relation Extraction (RE), which involves identifying relationships between entities within a sentence. However, the effectiveness of these methods relies heavily on the design of the prompts. A compelling question is whether incorporating external knowledge can enhance the language model's understanding of NLP tasks. In this paper, we introduce wiki-based prompt construction that leverages Wikidata as a source of information to craft more informative prompts for both prompt-tuning and instruction-tuning of language models in RE. Our experiments show that using wiki-based prompts enhances cutting-edge language models in RE, emphasizing their potential for improving RE tasks. Our code and datasets are available at GitHub 1
Part of ISBN 9798400702433
QC 20240719