Polymer Surface Topography in Life Science Applications: Impact of Manufacturing and Environmental Factors
2024 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]
The Life Sciences industry is leading the fifth industrial revolution, driving manufacturing towards precision, personalization and circularity through the implementation of additive manufacturing (AM). Since its origin in 1983, AM has enabled the fabrication of complex components previously inconceivable through conventional manufacturing techniques. In particular, powder bed fusion and material extrusion techniques have been adopted for their versatility with polymeric materials and ability to produce components meeting bioprocessing, biopharmaceutical and tissue engineering requirements.
Despite its potential, integrating AM in the Life Sciences presents crucial challenges, particularly due to the complex surfaces produced through the layer by-layer fabrication process, which result in rough surfaces and affect the functionality of the printed components. Traditionally, surface texture is characterized by contact stylus measurements employing profile roughness parameters such as the average roughness (Ra). However, the use of the Ra parameter is insufficient, as it fails to capture essential 3D topographical features and spatial variations.
This thesis addresses these challenges through two main research phases. First, it develops a comprehensive characterization workflow for polypropylene surfaces fabricated by conventional manufacturing, powder bed fusion and post-processing techniques. By implementing advanced roughness analysis, this research presents a deeper understanding of surface properties, such as texture and wettability, and their impact on essential bioprocessing applications, including cleanliness, bacterial adhesion, and biofilm formation.
The second phase extends this methodology to analyze environmental and sterilization effects on the surface properties of three dimensional-printed scaffolds. These platforms, made from degradable polymers, are intended for soft tissue engineering and regenerative medicine applications. The research examines how different thermal conditions and sterilization processes affect the surface texture and, consequently, the thermal and physical properties of the scaffolds.
The findings contribute to optimizing AM technologies for clinical and bioprocessing applications, providing a roadmap for future innovation. By emphasizing interdisciplinary collaboration, this thesis emphasizes the necessity of bridging materials science, engineering, and biology to create effective solutions for societal challenges.
Abstract [sv]
Life Sciences-industrin leder den femte industriella revolutionen och drivertillverkningen mot precision, personalisering och cirkularitet genomimplementering av additiv tillverkning (AM). Sedan dess ursprung 1983 har AMmöjliggjort tillverkningen av komplexa komponenter som tidigare varotänkbara med konventionella tillverkningstekniker. Särskiltpulverbäddsammansmältning och materialextrusionstekniker har antagits förderas mångsidighet med polymermaterial och förmåga att producerakomponenter som uppfyller krav inom bioprocesser, biopharmaceutik ochvävnadsteknik.
Trots dess potential står integrationen av AM inom Life Sciences inför viktigautmaningar, särskilt på grund av de komplexa ytor som produceras genomlager-på-lager-tillverkningsprocessen, vilket resulterar i grova ytor och påverkarfunktionen hos de utskrivna komponenterna. Traditionellt karakteriserasytstrukturen genom kontaktmätningar som använder profilensgrovhetsparametrar såsom genomsnittlig grovhet (Ra). Användningen av Raparameternär dock otillräcklig eftersom den misslyckas med att fånga viktiga3D-topografiska egenskaper och rumsliga variationer.
Denna avhandling tar itu med dessa utmaningar genom två huvudsakligaforskningsfaser. Först utvecklas ett omfattande karaktäriseringsflöde förpolypropenytor tillverkade med konventionell tillverkning,pulverbäddsammansmältning och efterbehandlingstekniker. Genom attanvända avancerad analys av ytans råhet erbjuder detta tillvägagångssätt endjupare förståelse av ytegenskaper, såsom textur och vätbarhet, och deraspåverkan på viktiga bioprocessapplikationer, inklusive renlighet, bakteriellvidhäftning och biofilmsbildning.
Den andra fasen utvidgar denna metodik för att analysera miljö- ochsterilisationseffekter på ytans egenskaper hos tredimensionellt utskrivnaställningar. Dessa plattformar, tillverkade av nedbrytbara polymerer, är avseddaför att regenerera mjukvävnad och regenerativ medicin. Forskningenundersöker hur olika termiska förhållanden och steriliseringsprocesserpåverkar ytstruktur och därmed de termiska och fysiska egenskaperna hosställningarna.
Resultaten bidrar till att optimera AM-teknologier för kliniska ochbioprocessapplikationer och erbjuder en vägkarta för framtida innovation.Genom att betona tvärvetenskapligt samarbete lyfter denna avhandling framnödvändigheten av att bygga broar mellan materialvetenskap, ingenjörskonstoch biologi för att skapa effektiva lösningar på samhällsutmaningar.
Place, publisher, year, edition, pages
Stockholm: KTH Royal Institute of Technology, 2024. , p. 85
Series
TRITA-CBH-FOU ; 2024:31
Keywords [en]
Polymeric surfaces, additive manufacturing, bioprocessing, surface characterization, tissue engineering, sterilization, thermal conditions, degradable polymers, 3D-printed scaffolds.
National Category
Polymer Technologies
Research subject
Fibre and Polymer Science
Identifiers
URN: urn:nbn:se:kth:diva-352784ISBN: 978-91-8106-020-1 (electronic)OAI: oai:DiVA.org:kth-352784DiVA, id: diva2:1895516
Public defence
2024-10-04, Kollegiesalen, Brinellvägen 6, https://kth-se.zoom.us/j/64926682181, Stockholm, 09:00 (English)
Opponent
Supervisors
Note
QC 20240906
2024-09-062024-09-052024-09-13Bibliographically approved
List of papers