kth.sePublications
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Polymer Surface Topography in Life Science Applications: Impact of Manufacturing and Environmental Factors
KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology, Polymer Technology.ORCID iD: 0000-0003-1129-908X
2024 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

The Life Sciences industry is leading the fifth industrial revolution, driving manufacturing towards precision, personalization and circularity through the implementation of additive manufacturing (AM). Since its origin in 1983, AM has enabled the fabrication of complex components previously inconceivable through conventional manufacturing techniques. In particular, powder bed fusion and material extrusion techniques have been adopted for their versatility with polymeric materials and ability to produce components meeting bioprocessing, biopharmaceutical and tissue engineering requirements.

Despite its potential, integrating AM in the Life Sciences presents crucial challenges, particularly due to the complex surfaces produced through the layer by-layer fabrication process, which result in rough surfaces and affect the functionality of the printed components. Traditionally, surface texture is characterized by contact stylus measurements employing profile roughness parameters such as the average roughness (Ra). However, the use of the Ra parameter is insufficient, as it fails to capture essential 3D topographical features and spatial variations.

This thesis addresses these challenges through two main research phases. First, it develops a comprehensive characterization workflow for polypropylene surfaces fabricated by conventional manufacturing, powder bed fusion and post-processing techniques. By implementing advanced roughness analysis, this research presents a deeper understanding of surface properties, such as texture and wettability, and their impact on essential bioprocessing applications, including cleanliness, bacterial adhesion, and biofilm formation.

The second phase extends this methodology to analyze environmental and sterilization effects on the surface properties of three dimensional-printed scaffolds. These platforms, made from degradable polymers, are intended for soft tissue engineering and regenerative medicine applications. The research examines how different thermal conditions and sterilization processes affect the surface texture and, consequently, the thermal and physical properties of the scaffolds.

The findings contribute to optimizing AM technologies for clinical and bioprocessing applications, providing a roadmap for future innovation. By emphasizing interdisciplinary collaboration, this thesis emphasizes the necessity of bridging materials science, engineering, and biology to create effective solutions for societal challenges.

Abstract [sv]

Life Sciences-industrin leder den femte industriella revolutionen och drivertillverkningen mot precision, personalisering och cirkularitet genomimplementering av additiv tillverkning (AM). Sedan dess ursprung 1983 har AMmöjliggjort tillverkningen av komplexa komponenter som tidigare varotänkbara med konventionella tillverkningstekniker. Särskiltpulverbäddsammansmältning och materialextrusionstekniker har antagits förderas mångsidighet med polymermaterial och förmåga att producerakomponenter som uppfyller krav inom bioprocesser, biopharmaceutik ochvävnadsteknik.

Trots dess potential står integrationen av AM inom Life Sciences inför viktigautmaningar, särskilt på grund av de komplexa ytor som produceras genomlager-på-lager-tillverkningsprocessen, vilket resulterar i grova ytor och påverkarfunktionen hos de utskrivna komponenterna. Traditionellt karakteriserasytstrukturen genom kontaktmätningar som använder profilensgrovhetsparametrar såsom genomsnittlig grovhet (Ra). Användningen av Raparameternär dock otillräcklig eftersom den misslyckas med att fånga viktiga3D-topografiska egenskaper och rumsliga variationer.

Denna avhandling tar itu med dessa utmaningar genom två huvudsakligaforskningsfaser. Först utvecklas ett omfattande karaktäriseringsflöde förpolypropenytor tillverkade med konventionell tillverkning,pulverbäddsammansmältning och efterbehandlingstekniker. Genom attanvända avancerad analys av ytans råhet erbjuder detta tillvägagångssätt endjupare förståelse av ytegenskaper, såsom textur och vätbarhet, och deraspåverkan på viktiga bioprocessapplikationer, inklusive renlighet, bakteriellvidhäftning och biofilmsbildning.

Den andra fasen utvidgar denna metodik för att analysera miljö- ochsterilisationseffekter på ytans egenskaper hos tredimensionellt utskrivnaställningar. Dessa plattformar, tillverkade av nedbrytbara polymerer, är avseddaför att regenerera mjukvävnad och regenerativ medicin. Forskningenundersöker hur olika termiska förhållanden och steriliseringsprocesserpåverkar ytstruktur och därmed de termiska och fysiska egenskaperna hosställningarna.

Resultaten bidrar till att optimera AM-teknologier för kliniska ochbioprocessapplikationer och erbjuder en vägkarta för framtida innovation.Genom att betona tvärvetenskapligt samarbete lyfter denna avhandling framnödvändigheten av att bygga broar mellan materialvetenskap, ingenjörskonstoch biologi för att skapa effektiva lösningar på samhällsutmaningar.

 

Place, publisher, year, edition, pages
Stockholm: KTH Royal Institute of Technology, 2024. , p. 85
Series
TRITA-CBH-FOU ; 2024:31
Keywords [en]
Polymeric surfaces, additive manufacturing, bioprocessing, surface characterization, tissue engineering, sterilization, thermal conditions, degradable polymers, 3D-printed scaffolds.
National Category
Polymer Technologies
Research subject
Fibre and Polymer Science
Identifiers
URN: urn:nbn:se:kth:diva-352784ISBN: 978-91-8106-020-1 (electronic)OAI: oai:DiVA.org:kth-352784DiVA, id: diva2:1895516
Public defence
2024-10-04, Kollegiesalen, Brinellvägen 6, https://kth-se.zoom.us/j/64926682181, Stockholm, 09:00 (English)
Opponent
Supervisors
Note

QC 20240906

Available from: 2024-09-06 Created: 2024-09-05 Last updated: 2024-09-13Bibliographically approved
List of papers
1. Monitoring and classification of polymeric surface features for enabling the adoption of polypropylene powder bed fusion as a standard tool for bioprocessing equipment production
Open this publication in new window or tab >>Monitoring and classification of polymeric surface features for enabling the adoption of polypropylene powder bed fusion as a standard tool for bioprocessing equipment production
2023 (English)In: Additive Manufacturing, ISSN 2214-8604, E-ISSN 2214-7810, Vol. 72, article id 103632Article in journal (Refereed) Published
Abstract [en]

Polypropylene (PP) powder bed fusion (PBF) with subsequent mechanical postprocessing can enable the development of more efficient and effective surfaces for bioprocessing equipment. However, there is still a lack of knowledge regarding the most relevant surface differences when compared to standardized surfaces. Herein, we present a new systematic methodology, including the evaluation of relevant roughness parameters and surface wettability, which has been implemented to assess the potential of AM to produce biopharmaceutical components. Surfaces of PP components produced by PBF and mechanically postprocessed by tumble surface finishing at 5, 10 and 15 h were compared to reference surfaces produced by computer numerical control (CNC) milling manufacturing. Thirteen roughness parameters were found to be relevant, of which the arithmetic mean peak curvature (Spc) and the density of peaks (Spd) were the most significant. The results demonstrate that the reference surfaces had Spc and Spd values of 1029 ± 36 mm−1 and 67739 ± 5440 mm−2, respectively, and moderate wettability with advancing (ACA) and receding (RCA) contact angles of 89 ± 3° and 68 ± 2°, respectively. The as-printed PBF surfaces were hydrophobic, with ACA of 119 ± 2° and RCA of 107 ± 4°, and with Spc and Spd values of 1089 ± 110 mm−1 and 30078 ± 4325 mm−2, respectively. PBF surfaces switched to a hydrophilic surface of 67 ± 3° and 44 ± 4° when the tumble surface finishing time was increased to 15 h. By taking advantage of this knowledge, we could produce surfaces using PBF and 5 h of mechanical postprocessing, which mimicked surface wetting and had Spc of 1100 ± 68 mm−1 and Spd of 55702 ± 9477 mm−2, similar to that of the CNC milling manufacturing. The developed comparative method and the results are important to better understand AM surfaces and can be used to transfer manufacturing from subtractive to additive technologies.

Place, publisher, year, edition, pages
Elsevier BV, 2023
Keywords
Areal surface roughness, Polypropylene powder bed fusion, Surface texture, Surface wettability, Tumble surface finishing
National Category
Manufacturing, Surface and Joining Technology
Identifiers
urn:nbn:se:kth:diva-331482 (URN)10.1016/j.addma.2023.103632 (DOI)001019303200001 ()2-s2.0-85161271422 (Scopus ID)
Note

QC 20230711

Available from: 2023-07-11 Created: 2023-07-11 Last updated: 2024-09-06Bibliographically approved
2. Impact of storage at different thermal conditions on surface characteristics of 3D printed polycaprolactone and poly(ε-caprolactone-co-p-dioxanone) scaffolds
Open this publication in new window or tab >>Impact of storage at different thermal conditions on surface characteristics of 3D printed polycaprolactone and poly(ε-caprolactone-co-p-dioxanone) scaffolds
2023 (English)In: Bioprinting, ISSN 2405-8866, Vol. 33, article id e00293Article in journal (Refereed) Published
Abstract [en]

Fused filament fabrication (FFF) is a commonly used method for producing three-dimensional scaffolds using synthetic, degradable polymers. However, there are several variables that must be considered when fabricating devices for clinical use, one of which is storage conditions after printing. While the academic community has examined the impact of FFF on mechanical and thermal properties, there has been less focus on how storage conditions would affect the surface texture of scaffolds. Our hypothesis was that the surface, thermal and physical properties of FFF scaffolds are significantly influenced by the storage conditions. We evaluated the surfaces of FFF poly (ε-caprolactone) (PCL) and poly (ε-caprolactone-co-p-dioxanone) (PCLDX) strands that were stored at 4 °C, 20 °C, and 37 °C for 28 days. We monitored surface texture, physical and thermal changes to understand the effect of storage on the strands. The implementation of scale-sensitive fractal analysis and feature parameters revealed that storage conditions at 37 °C increased the number of hills and dales, as well as the density of peaks and pits compared to 20 °C and 4 °C, for both materials. The feature roughness parameters for PCL had up to 90% higher values than those of PCLDX, which correlated with the physical and thermal properties of the materials. These differences may impact further surface-cell interaction, highlighting the need for further evaluation for faster clinical translation. Our findings emphasize the importance of considering storage conditions in the design and manufacture of FFF scaffolds and suggest that the use of feature roughness parameters could facilitate the optimization and tailoring the surface properties for specific applications.

Place, publisher, year, edition, pages
Elsevier BV, 2023
Keywords
3D-printing, Degradable polymer, Fused filament fabrication, Storage, Surface roughness
National Category
Polymer Technologies Polymer Chemistry
Identifiers
urn:nbn:se:kth:diva-334864 (URN)10.1016/j.bprint.2023.e00293 (DOI)2-s2.0-85163178018 (Scopus ID)
Note

QC 20230831

Available from: 2023-08-28 Created: 2023-08-28 Last updated: 2024-09-06Bibliographically approved
3. Influence of surface characteristics of polypropylene on E. coli and S. aureus biofilms: From conventional to additive manufacturing of bioprocess equipment
Open this publication in new window or tab >>Influence of surface characteristics of polypropylene on E. coli and S. aureus biofilms: From conventional to additive manufacturing of bioprocess equipment
Show others...
2024 (English)In: Applied Materials Today, ISSN 2352-9407, Vol. 39, article id 102312Article in journal (Refereed) Published
Abstract [en]

The fast-progressing landscape of the bioprocessing industry emphasizes innovation and efficiency enhancement, propelled by the integration of advanced solutions. Additive manufacturing technologies, particularly laserbased powder bed fusion with polypropylene, are pivotal in this industrial metamorphosis. However, despite the substantial scientific effort in the field, a significant gap exists in comprehending the surface characteristics of new surfaces and their implications for bacterial attachment and biofilm formation. This arises, in part, due to the absence of comprehensive and universally applicable topographical characterization analysis specifically designed for additively manufactured-fabricated surfaces. Typically, researchers tend to rely on the commonly used roughness parameter, Sa, that primarily quantifies the average height variation across a surface. Addressing this limitation is crucial for understanding the connection between surface characteristics and bacterial attachment dynamics. Here, we propose an innovative approach using surface analysis including confocal microscopy, advanced roughness measurements, and multivariate statistical analysis to uncover the connections between bacterial attachment for Gram negative Escherichia coli and Gram positive Staphylococcus aureus in early biofilm formation with surfaces produced by standardized and additively manufactured techniques. Finally, we advocate for the adoption of a set of roughness parameters that specifically describe the dale region of the surfaces. By doing so, we intend to establish direct links between surface texture and bacterial adhesion, thus contributing significantly to the advancement of both bioprocessing and additive manufacturing research domains.

Place, publisher, year, edition, pages
Elsevier BV, 2024
Keywords
Biofilm, 3D-printing, Polypropylene, Surface roughness, Wettability
National Category
Materials Chemistry
Identifiers
urn:nbn:se:kth:diva-350854 (URN)10.1016/j.apmt.2024.102312 (DOI)001265212300001 ()2-s2.0-85197427802 (Scopus ID)
Note

QC 20240722

Available from: 2024-07-22 Created: 2024-07-22 Last updated: 2024-09-06Bibliographically approved
4. Effect of Ethylene Oxide and Gamma Sterilization on Surface Texture of Films and Electrospun Poly(ε-caprolactone-co-p-dioxanone) (PCLDX) Scaffolds
Open this publication in new window or tab >>Effect of Ethylene Oxide and Gamma Sterilization on Surface Texture of Films and Electrospun Poly(ε-caprolactone-co-p-dioxanone) (PCLDX) Scaffolds
Show others...
2024 (English)In: Polymer testing, ISSN 0142-9418, E-ISSN 1873-2348, Vol. 139, no 108567Article in journal (Other academic) Published
National Category
Polymer Technologies
Identifiers
urn:nbn:se:kth:diva-352780 (URN)10.1016/j.polymertesting.2024.108567 (DOI)2-s2.0-85203495496 (Scopus ID)
Note

QC 20240906

Available from: 2024-09-05 Created: 2024-09-05 Last updated: 2024-09-26Bibliographically approved
5. Methods of producing and determining cleanability of parts for bioprocessing systems
Open this publication in new window or tab >>Methods of producing and determining cleanability of parts for bioprocessing systems
2023 (English)Patent (Other (popular science, discussion, etc.))
National Category
Polymer Technologies
Identifiers
urn:nbn:se:kth:diva-352781 (URN)
Patent
WO 2024/160524 A1
Note

QC 20240906

Available from: 2024-09-05 Created: 2024-09-05 Last updated: 2024-09-06Bibliographically approved
6. Methods of producing and determining propensity for bacterial adhesion to parts for bioprocessing systems
Open this publication in new window or tab >>Methods of producing and determining propensity for bacterial adhesion to parts for bioprocessing systems
2024 (English)Patent (Other (popular science, discussion, etc.))
National Category
Polymer Technologies
Identifiers
urn:nbn:se:kth:diva-352783 (URN)
Patent
SE WO 2024/160524 A1
Note

QC 20240906

Available from: 2024-09-05 Created: 2024-09-05 Last updated: 2024-09-06Bibliographically approved

Open Access in DiVA

Summary (kappa)(4807 kB)23 downloads
File information
File name FULLTEXT01.pdfFile size 4807 kBChecksum SHA-512
68120742f3f3d0f7b77f1723729b20e983eb50588111446066109e55d9e7b809bc5f48f54e9745a5ccb2581e17fc64096588b64590c82c7d3d086d66303b33d1
Type summaryMimetype application/pdf

Authority records

Morales López, Álvaro

Search in DiVA

By author/editor
Morales López, Álvaro
By organisation
Polymer Technology
Polymer Technologies

Search outside of DiVA

GoogleGoogle Scholar
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

isbn
urn-nbn

Altmetric score

isbn
urn-nbn
Total: 277 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf