kth.sePublications
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Characterization of Single Nanovesicles and Their Potential for Cancer Diagnostics
KTH, School of Engineering Sciences (SCI), Applied Physics.ORCID iD: 0000-0002-8561-3986
2024 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

Extracellular vesicles (EVs, ∼ 30 nm−5 μm ) are lipid bilayer-enclosed particles expressingvaluable biological information such as proteins, lipids, and nucleic acids that reflecttheir shedding cell. The discovery of their importance in cell-to-cell communicationsparked a boom in research. Their abundance, ability to freely surpass natural barriersin the body, and reflection to the original cell make them suitable players in fieldssuch as treatment monitoring and targeted drug delivery. By investigating how EVsubpopulations interact with cells, we may also gain further insights into theoreticalquestions such as how cells communicate and how cells respond to external stimuli.Virtually all cells in the body release EVs; each cell may contain multiple origin spots forbiogenesis, and EVs may have different intended purposes that are also reflected in theircomposition. Therefore, EVs are extremely heterogeneous in size, expression level ofbiomolecules, and nanomechanical properties such as elasticity. This heterogeneity andthe small size of the vesicle pose technical challenges for the characterization platformsexisting today. EVs may be studied in bulk with a single output for an entire particleensemble or individually, yielding a characterization of individual EVs in a sample.Bulk methods are often faster, offer higher throughput, and may be the only option foranalyzing some parts, such as RNA. However, for complete characterization, we need toretrieve information on single EVs. This thesis explores techniques to characterize EVson a single vesicle level with three different platforms: a fluorescence microscope, anatomic force microscope, and a combined fluorescence and atomic force microscope.First, a fluorescence microscope is used to study EVs released by cells in a cancercell line model study. The cells are either left untreated or treated with two drugs: onethat the cells should respond to and one that they should be immune to. Five relevantsurface proteins were stained, imaged, and analyzed. The study revealed the possibilityof monitoring drug responses through immunofluorescence. Next, the platform was usedto study lung cancer patients undergoing treatment with EVs retrieved through liquidbiopsy. Each patient generated two sets of EVs: one sample from before treatmentand one sample after treatment, but before the tumor stopped responding to the drug.While the study revealed changes in individual proteins when comparing the two sampleswithin each patient, it was difficult to distinguish a pattern regarding the length oftreatment before drug resistance. It was not until we studied the correlation of proteinsand combined all protein expressions in a sample into a joint probability distributionthat trends became clearer. Longer treatments, for example, were found to have astronger positive correlation among the proteins. This highlights the importance ofincluding sophisticated statistical methods to analyze clinical EV samples on a singleEV level. Next, a theoretical model taking into account the EV’s liquid properties was con-structed. The model agrees with force spectroscopy measurements performed with force microscopy. Three EV samples with different protein expression levels were comparedin terms of elasticity moduli. With the low throughput of EVs in the technique, astatistical framework to compare the distributions of stiffness values was developed. Theframework revealed a large variation in stiffness values extracted from a single vesicle,which is hypothetically attributed to thermal fluctuations and diffusion of membranemolecules.Finally, we combined the fluorescence microscope and atomic force microscope toinvestigate subpopulations and heterogeneity in single EVs with both protein expressionand precise mechanical measurements of size and Young’s modulus. The platformrevealed distinct subpopulations with unique properties in the analyzed parameters. These combined measurements are the first of their kind, and a combined platformcharacterizing EVs in multiple ways may offer great insights into EV biology.

Abstract [sv]

Extracellulära vesiklar (EVs, ~30 nm - 5 µm) är lipiddubbelskiktsinneslutna partiklar som uttrycker värdefull biologisk information som proteiner, lipider och nukleinsyror som reflekterar deras föräldracell.Upptäckten av deras betydelse i cell-till-cellkommunikation utlöste en explosion inom forskning. Deras mängd, förmåga att fritt passera naturliga barriärer i kroppen och reflektion av dess ursprungliga cell gör dem till lämpliga aktörer inom områden som behandlingsövervakning och riktad läkemedelsleverans. Genom att undersöka hur EV-subpopulationer interagerar med celler kan vi också få ytterligare insikter i teoretiska frågor som hur celler kommunicerar och hur celler reagerar på yttre stimuli. Praktiskt taget alla celler i kroppen släpper ut EVs; varje cell kan innehålla flera ursprungsplatser för biogenes, och EVs kan ha olika avsedda syften som också återspeglas i deras sammansättning. Därför är EVs extremt heterogena i storlek, uttrycksnivå av biomolekyler och nanomekaniska egenskaper som elasticitet. Denna heterogenitet och den lilla storleken på vesikeln utgör tekniska utmaningar för de karaktäriseringsplattformar som finns idag. EVs kan studeras i bulk med ett enda resultat för en hel partikelensemble eller individuellt, vilket ger en karakterisering av individuella vesiklar i ett prov. Bulkmetoder är ofta snabbare, erbjuder högre genomströmning och kan ibland vara det enda alternativet för att analysera vissa delar, såsom RNA. Men för en fullständig karaktärisering måste vi hämta information om enstaka vesiklar. Denna avhandling utforskar tekniker för att karakterisera EVs på en enstaka vesikelnivå med tre olika plattformar: ett fluorescensmikroskop, ett atomkraftmikroskop och ett kombinerat fluorescens- och atomkraftmikroskop.

Först används ett fluorescensmikroskop för att studera EVs som frigörs av celler i en modellstudie av cancercellinjer. Cellerna lämnas antingen obehandlade eller behandlas med två läkemedel: ett som cellerna ska svara på och ett som de ska vara immuna mot. Fem relevanta ytproteiner taggades, fotograferades och analyserades.Studien avslöjade möjligheten att bevaka läkemedelssvar genom immunfluorescens. Därefter användes plattformen för att studera lungcancerpatienter som genomgick behandling med EVs hämtade genom flytande biopsi.Varje patient genererade två uppsättningar EVs: ett prov från före behandling och ett prov efter behandling, men innan tumören slutade svara på läkemedlet. Medan studien avslöjade förändringar i individuella proteiner när man jämförde de två proverna inom varje patient, var det svårt att särskilja ett mönster angående behandlingslängden före läkemedelsresistens. Det var inte förrän vi studerade korrelationen mellan proteiner och kombinerade alla proteinuttryck i ett prov till en gemensam sannolikhetsfördelning som trenderna blev tydligare. Längre behandlingar visade sig exempelvis ha en starkare positiv korrelation bland proteinerna. Detta understryker vikten av att inkludera sofistikerade statistiska metoder för att analysera kliniska EV-prover på en enda EV-nivå.

Därefter konstruerades en teoretisk modell som tar hänsyn till vesikelns flytande egenskaper. Modellen överensstämmer med kraftspektroskopimätningar utförda med kraftmikroskopi. Tre EV-prover med olika proteinnivåer jämfördes i termer av elasticitetsmoduler. Med den låga genomströmningen av EVs i plattformen utvecklades ett statistiskt ramverk för att jämföra fördelningarna av styvhetsvärden. Ramverket avslöjade en stor variation i styvhetsvärden extraherade från en enda vesikel, vilket hypotetiskt tillskrivs termiska fluktuationer och diffusion av membranmolekyler.

Slutligen kombinerade vi fluorescensmikroskopet och atomkraftmikroskopet för att undersöka subpopulationer och heterogenitet hos individuella EVs i både proteinuttryck och exakta mekaniska mätningar av storlek och Youngs modul. Plattformen avslöjade distinkta subpopulationer med unika egenskaper i de analyserade parametrarna. Dessa kombinerade mätningar är de första i sitt slag, och en kombinerad plattform som karakteriserar EVs på flera sätt kan ge fantastiska insikter om EV-biologi.

Place, publisher, year, edition, pages
KTH Royal Institute of Technology, 2024. , p. 108
Series
TRITA-SCI-FOU ; 2024:43
National Category
Biophysics
Identifiers
URN: urn:nbn:se:kth:diva-352959ISBN: 978-91-8106-037-9 (print)OAI: oai:DiVA.org:kth-352959DiVA, id: diva2:1896557
Public defence
2024-10-03, FD5, Roslagstullsbacken 21, stockholm, 13:00 (English)
Opponent
Supervisors
Note

QC 2024-09-12

Available from: 2024-09-12 Created: 2024-09-10 Last updated: 2024-09-12Bibliographically approved
List of papers
1. Multiparametric Profiling of Single Nanoscale Extracellular Vesicles by Combined Atomic Force and Fluorescence Microscopy: Correlation and Heterogeneity in Their Molecular and Biophysical Features
Open this publication in new window or tab >>Multiparametric Profiling of Single Nanoscale Extracellular Vesicles by Combined Atomic Force and Fluorescence Microscopy: Correlation and Heterogeneity in Their Molecular and Biophysical Features
Show others...
2021 (English)In: Small, ISSN 1613-6810, E-ISSN 1613-6829, Vol. 17, no 14, article id 2008155Article in journal (Refereed) Published
Abstract [en]

Being a key player in intercellular communications, nanoscale extracellular vesicles (EVs) offer unique opportunities for both diagnostics and therapeutics. However, their cellular origin and functional identity remain elusive due to the high heterogeneity in their molecular and physical features. Here, for the first time, multiple EV parameters involving membrane protein composition, size and mechanical properties on single small EVs (sEVs) are simultaneously studied by combined fluorescence and atomic force microscopy. Furthermore, their correlation and heterogeneity in different cellular sources are investigated. The study, performed on sEVs derived from human embryonic kidney 293, cord blood mesenchymal stromal and human acute monocytic leukemia cell lines, identifies both common and cell line-specific sEV subpopulations bearing distinct distributions of the common tetraspanins (CD9, CD63, and CD81) and biophysical properties. Although the tetraspanin abundances of individual sEVs are independent of their sizes, the expression levels of CD9 and CD63 are strongly correlated. A sEV population co-expressing all the three tetraspanins in relatively high abundance, however, having average diameters of <100 nm and relatively low Young moduli, is also found in all cell lines. Such a multiparametric approach is expected to provide new insights regarding EV biology and functions, potentially deciphering unsolved questions in this field.

Place, publisher, year, edition, pages
Wiley, 2021
Keywords
AFM, extracellular vesicles, fluorescence microscopy, mechanical properties, protein profiling, single vesicle profiling, size profiling
National Category
Basic Medicine
Identifiers
urn:nbn:se:kth:diva-293079 (URN)10.1002/smll.202008155 (DOI)000626029700001 ()33682363 (PubMedID)2-s2.0-85102149509 (Scopus ID)
Note

QC 20210420

Available from: 2021-04-20 Created: 2021-04-20 Last updated: 2024-09-10Bibliographically approved
2. Analyses of single extracellular vesicles from non-small lung cancer cells to reveal effects of epidermal growth factor receptor inhibitor treatments
Open this publication in new window or tab >>Analyses of single extracellular vesicles from non-small lung cancer cells to reveal effects of epidermal growth factor receptor inhibitor treatments
Show others...
2023 (English)In: Talanta: The International Journal of Pure and Applied Analytical Chemistry, ISSN 0039-9140, E-ISSN 1873-3573, Vol. 259, article id 124553Article in journal (Refereed) Published
Abstract [en]

Precision cancer medicine has changed the treatment landscape of non-small cell lung cancer (NSCLC) as illustrated by the introduction of tyrosine kinase inhibitors (TKIs) towards mutated epidermal growth factor receptor (EGFR). However, as responses to EGFR-TKIs are heterogenous among NSCLC patients, there is a need for ways to early monitor changes in treatment response in a non-invasive way e.g., in patient's blood samples. Recently, extracellular vesicles (EVs) have been identified as a source of tumor biomarkers which could improve on non-invasive liquid biopsy-based diagnosis of cancer. However, the heterogeneity in EVs is high. Putative biomarker candidates may be hidden in the differential expression of membrane proteins in a subset of EVs hard to identify using bulk techniques. Using a fluorescence-based approach, we demonstrate that a single-EV tech-nique can detect alterations in EV surface protein profiles. We analyzed EVs isolated from an EGFR-mutant NSCLC cell line, which is refractory to EGFR-TKIs erlotinib and responsive to osimertinib, before and after treatment with these drugs and after cisplatin chemotherapy. We studied expression level of five proteins; two tetraspanins (CD9, CD81), and three markers of interest in lung cancer (EGFR, programmed death-ligand 1 (PD-L1), human epidermal growth factor receptor 2 (HER2)). The data reveal alterations induced by the osimertinib treatment compared to the other two treatments. These include the growth of the PD-L1/HER2-positive EV population, with the largest increase in vesicles exclusively expressing one of the two proteins. The expression level per EV decreased for these markers. On the other hand, both the TKIs had a similar effect on the EGFR-positive EV population.

Place, publisher, year, edition, pages
Elsevier BV, 2023
Keywords
Extracellular vesicles, Fluorescence microscopy, Single EV analysis, Immunostaining, Non -small cell lung cancer, EGFR-TKIs
National Category
Cancer and Oncology
Identifiers
urn:nbn:se:kth:diva-328323 (URN)10.1016/j.talanta.2023.124553 (DOI)000988764700001 ()37084607 (PubMedID)2-s2.0-85152592060 (Scopus ID)
Note

QC 20230607

Available from: 2023-06-07 Created: 2023-06-07 Last updated: 2024-09-10Bibliographically approved
3. Force spectroscopy reveals membrane fluctuations and adhesion forces of extracellular nanovesicles strongly impact their elastic behavior
Open this publication in new window or tab >>Force spectroscopy reveals membrane fluctuations and adhesion forces of extracellular nanovesicles strongly impact their elastic behavior
Show others...
(English)Manuscript (preprint) (Other academic)
National Category
Biophysics
Research subject
Physics, Biological and Biomedical Physics
Identifiers
urn:nbn:se:kth:diva-352956 (URN)
Note

QC 20240910

Available from: 2024-09-10 Created: 2024-09-10 Last updated: 2024-09-10Bibliographically approved
4. Machine Learning Reveals That Osimertinib Treatment Influences Surface Protein Profiles in Non-small Cell Lung Cancer Patients
Open this publication in new window or tab >>Machine Learning Reveals That Osimertinib Treatment Influences Surface Protein Profiles in Non-small Cell Lung Cancer Patients
Show others...
(English)Manuscript (preprint) (Other academic)
National Category
Cancer and Oncology
Research subject
Biological Physics
Identifiers
urn:nbn:se:kth:diva-352957 (URN)
Note

QC 20240912

Available from: 2024-09-10 Created: 2024-09-10 Last updated: 2024-09-12Bibliographically approved
5. Proteomic profiling of extracellular vesicles in relation to osimertinib sensivity in non-small cell lung cancer identifies Chondroitin sulfate proteoglycan 4 and immune signaling networks as potential biomarkers
Open this publication in new window or tab >>Proteomic profiling of extracellular vesicles in relation to osimertinib sensivity in non-small cell lung cancer identifies Chondroitin sulfate proteoglycan 4 and immune signaling networks as potential biomarkers
Show others...
(English)Manuscript (preprint) (Other academic)
National Category
Cancer and Oncology
Research subject
Applied Medical Technology
Identifiers
urn:nbn:se:kth:diva-352958 (URN)
Note

QC 20240924

Available from: 2024-09-10 Created: 2024-09-10 Last updated: 2024-09-24Bibliographically approved

Open Access in DiVA

summary(5819 kB)44 downloads
File information
File name SUMMARY01.pdfFile size 5819 kBChecksum SHA-512
aea9a21e4123eacaa7feb91d859cf30b8edf778ea195ad5198bb744627a2e696ddbe7c2218eb6d1fb6eeaea60da2fd6baa3b295aae28fc622a7db98bff525f44
Type summaryMimetype application/pdf

Authority records

Stridfeldt, Fredrik

Search in DiVA

By author/editor
Stridfeldt, Fredrik
By organisation
Applied Physics
Biophysics

Search outside of DiVA

GoogleGoogle Scholar
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

isbn
urn-nbn

Altmetric score

isbn
urn-nbn
Total: 46 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf