kth.sePublications
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Modeling and Parameter Estimation of Electrical Multiphase Machines in Traction Applications
KTH, School of Electrical Engineering and Computer Science (EECS), Electrical Engineering, Electric Power and Energy Systems.ORCID iD: 0000-0001-6042-2975
2024 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

This thesis examines the modeling and parameter estimation of multiphase electrical machine (MPEM) and fault-tolerant permanent-magnet synchronous machine (PMSM) drives for traction applications. These drive systems typically require a wide constant power-speed range, substantial overload capability, and high efficiencies along with operational reliability.

A class of MPEMs known as variable phase-pole machines (VPPMs) has been identified as possible magnet-free candidates to fulfill these requirements. However, research on their modeling and subsequent parameter estimation is scarce. State-of-the-art models such as the vector-space decomposition (VSD)assume a fixed number of phases and half-wave symmetry of the stator current distribution. Therefore, the first part of this thesis proposes an alternative modeling through the harmonic plane decomposition (HPD). Using the HPD, we showcase reference generations for rotor field-oriented control to accomplish different non-trivial phase-pole configurations and a strategy for switching between them. A constrained loss-minimization also demonstrates that VPPMs can improve the overload capability and reduce losses compared to an identical machine operated with a fixed phase-pole number.

The second part of the thesis identifies the HPD parameters of a VPPM using standard tests performed on a reduced set of harmonic planes using solely a three-phase sinusoidal supply. This part shows that an optimally weighted least-squares estimation of the machine parameters can accurately determine the full suite of rotor resistances and unsaturated magnetizing inductances while segregating rotor and stator leakages. A key to doing so is to include a regularization term.

The third part of the thesis investigates inter-plane cross saturation. This phenomenon occurs between harmonic planes because the excited harmonics of the magnetic field share the same flux paths through the machine’s steel. In response, we propose an advanced Γ-model with saturable rotor bridge and stator inductances taking, respectively, the bridge and air-gap magneticflux densities as inputs. The result is saturation models with a single input implicitly accounting for the phase displacement and different amplitudes ofthe space-harmonic magnetic fields.

The fourth part of the thesis investigates a fault case of PMSMs termed active short-circuit (ASC) in which the machine terminals are deliberately clamped to a DC-rail. The resulting transient may cause irreversible demagnetization of the rotor permanent magnets and impose a sudden and appreciable braking torque on the machine shaft. From the non-linear flux maps of the PMSM, we deduce the set of initial conditions that do not demagnetize the permanent magnets and obey a user-defined torque limit. The model is used to elaborate a direct flux-vector-control based strategy to control the state variables into the safe operating area of initial conditions before applying the ASC. The strategy optimally uses the assigned voltage resources to decrease the stator-flux magnitude to an acceptable level within a predictable time. It is displayed and experimentally demonstrated how the strategy consequently protects the machine from a detrimental transient.

This work shows that appropriate modeling of VPPMs enables efficient use of the available input power and may extend the torque-speed operating region. It is also a prerequisite for accurate control in dynamic operation. While experimental parameter estimation of the HPD model can be made simpler and more robust using regularized estimators, dealing with magnetic cross-saturation poses a challenge when demanding constant and accurate torque output during pole-changing and harmonic injection. Currently, PMSMs remain commonplace in traction applications. Steps to improve their fault tolerance to ASCs are taken in this thesis, relieving a common concern in automotive applications that need to comply with functional safety standards such as ISO 26262.

Abstract [sv]

Denna avhandling undersöker modelleringen och parameterestimeringenav elektriska flerfasiga maskiner (MPM:er) samt feltoleranta drivsystem för permanentmagnetiserade maskiner (PMSM:er) i framdrivningstillämpingar. Dessa drivsystem kräver vanligtvis ett brett hastighetsomfång med konstanteffekt, betydande överbelastningskapacitet och hög verkningsgrad samtidigt som de ska uppvisa hög driftsäkerhet.

En klass av MPM:er kända som variabla fas-pol-maskiner (VPPM:er) har identifierats som magnetfria kandidater för att uppfylla dessa krav. Dock är forskningen kring deras modellering och efterföljande parameterestimering knapphändig. Vanliga modeller såsom vektorrumsdekompositionen (VSD) antar ett fixerat antal faser och halvvågssymmetri hos statorströmfördelningen. Därför föreslår första delen av denna avhandling en alternativ modellering medelst övertonsplandekomposition (HPD). Genom att använda HPD:n åstadkoms olika icke-triviala fas-pol-konfigurationer med lämpliga val av strömreferenser för rotorfältorienterad strömreglering. Vi ger också exempel på en strategi för att växla mellan dem. Genom en förlustminimering med bivillkor visas det också att VPPM:er fördelaktigt kan tillämpas för att förbättra överbelastningsförmågan och minska förlusterna jämfört med en identisk maskinsom tillämpar ett fixerat fas-pol-tal. Avhandlingens andra del identifierar HPD-parametrarna hos en VPPM genom standardtester utförda på en reducerad uppsättning övertonsplan med enbart en trefas sinusoidal spänningskälla. Denna del visar att en optimaltviktad minsta-kvadrat-estimering av maskinparametrarna noggrant kan bestämma hela omfånget av rotorresistanser och omättade magnetiseringsinduktanser samtidigt som den separerar rotor- och statorläckage. En nyckel till detta är att inkludera en regulariseringsterm.

Avhandlingens tredje del fortsätter med att studera korsmättnad mellan övertonsplan. Fenomenet uppstår eftersom de exciterade rumsövertonerna av det magnetiska fältet delar samma magnetiska flödesbanor genom maskinens stål. Som lösning föreslår vi en avancerad Γ-modell med mättnadsbara rotorbryggor och statorinduktanser som använder bryggornas och luftgapets magnetiska flödestätheter som indata för respektive mättnadsfunktion. Resultatet är mättnadsmodeller med en enda inmatningsvariabel som implicit tar hänsyn till fasförskjutningen och de olika amplituderna av de magnetiska rumsövertonsfälten.

Avhandlingens fjärde del undersöker ett felfall hos PMSM:er, benämndaktiv kortslutning, där maskinterminalerna aktivt ansluts till antingen positiv eller negativ DC-bus. Den resulterande transienten kan orsaka irreversibel demagnetisering av permanentmagneterna installerade i rotorn och åsamkar ett plötsligt och avesvärt bromsmoment på maskinaxeln. Från de icke-linjära flödeskartorna av en PMSM härleder vi intitalvilkoren som undgår att demagnetisera permanentmagneterna och respekterar en användardefinierad vridmomentbegränsning. Modellen används för att utarbeta en strategi baserad på direkt flödesvektorreglering för att styra tillståndsvariablerna till det säkra operationsområdet innan den aktiva kortslutningen tillämpas. Strategin använder de tilldelade spänningsresurserna optimalt för att minska statorflödet till en acceptabel nivå inom en förutsägbar tid. Experiment demonstrerar hur strategin följaktligen skyddar maskinen från en skadlig transient.

Denna avhandling visar att en lämplig VPPM-modell möjliggör effektivanvändning av tillgänglig effekt och kan utvidga arbetsområdet för kontinuerlig drift. Modellen är också en förutsättning för verkningsfull styrning avstatorströmmen. Ehuru experimentell parameterestimering av HPD-modellen kan förenklas och göras mer robust genom att använda regulariserade estimatorer, utgör hanteringen av magnetisk korsmättnad en utmaning när konstantoch noggrant vridmoment krävs under polbyten och övertonsinjektion. För närvarande är PMSM:er vanliga inom traktionstillämpningar. Åtgärder för att förbättra motståndskraften mot fel till följd av aktiva kortslutningar hos dessa maskiner föreslås i denna avhandling, vilket bemöter ett problem inom fordonsapplikationer som behöver efterleva funktionella säkerhetsstandarder såsom ISO 26262.

Place, publisher, year, edition, pages
KTH Royal Institute of Technology, 2024. , p. xvii, 127
Series
TRITA-EECS-AVL ; 2024:56
Keywords [en]
active short-circuit, harmonic plane decomposition, inter-plane cross saturation, multiphase induction machines, parameter estimation, traction, permanent magnet synchronous machines, variable phase-pole machines
Keywords [sv]
aktiv kortslutning, flerfasig induktionsmaskin, framdrivning, inter-plan-korsmättning, parameterestimering, permanentmagnetiserade maskiner, variabel fas-pol-maskin, övertonsplan-dekomposition
National Category
Electrical Engineering, Electronic Engineering, Information Engineering
Identifiers
URN: urn:nbn:se:kth:diva-352806ISBN: 978-91-8040-975-9 (print)OAI: oai:DiVA.org:kth-352806DiVA, id: diva2:1896673
Public defence
2024-10-04, https://kth-se.zoom.us/webinar/register/WN_6uOecoRNTGyRWn4ELR-7Ag, E3, Osquars backe 2, Stockholm, 10:00 (English)
Opponent
Supervisors
Note

The public defense is broadcast online. A link to the registration follows: https://kth-se.zoom.us/webinar/register/WN_6uOecoRNTGyRWn4ELR-7Ag

QC 20240911

Available from: 2024-09-11 Created: 2024-09-10 Last updated: 2024-09-16Bibliographically approved
List of papers
1. Harmonic Plane Decomposition: An Extension of the Vector-Space Decomposition - Part II
Open this publication in new window or tab >>Harmonic Plane Decomposition: An Extension of the Vector-Space Decomposition - Part II
2020 (English)In: Proceedings of The 46th Annual Conference of the IEEE Industrial Electronics Society, IECON 2020, Institute of Electrical and Electronics Engineers (IEEE) , 2020, p. 991-996Conference paper, Published paper (Refereed)
Abstract [en]

In this paper the harmonic plane decomposition from part I is completed. Multiphase electrical machines with independently controlled stator coils benefit from a fixed amount of current controllers and unified models. In part I, the foundation for such models was laid. This paper shows that the choice of the base case has to fulfill certain criteria to properly represent vector-space quantities. More specifically, phase-pole configurations with an even number of pole pairs need adapted base cases with reduced rank as compared to the odd base case. Continuous modeling and control requires retention of the dimensionality of Clarke matrices. A different number of stator and rotor slots can lead to aliasing in the transformation, when keeping the dimension consistent. Therefore, a specific Clarke transformation for rotor quantities based on the developed theory is elaborated. Finally, it is demonstrated how the harmonic plane decomposition can be used to model each harmonic plane of an arbitrary phase-pole configuration with conventional machine equivalent circuits, e.g. the T-equivalent or inverse-Γ models.

Place, publisher, year, edition, pages
Institute of Electrical and Electronics Engineers (IEEE), 2020
Keywords
complex winding factor, DFT, harmonic plane decomposition, multiphase electric machines, vector-space decomposition
National Category
Electrical Engineering, Electronic Engineering, Information Engineering
Research subject
Electrical Engineering
Identifiers
urn:nbn:se:kth:diva-287185 (URN)10.1109/IECON43393.2020.9254279 (DOI)000637323700157 ()2-s2.0-85097789907 (Scopus ID)
Conference
The 46th Annual Conference of the IEEE Industrial Electronics Society, IECON 2020, Singapore, October 18-21, 2020
Note

Part of proceedings ISBN 978-1-7281-5415-2

QC 20201208

Available from: 2020-12-04 Created: 2020-12-04 Last updated: 2024-09-10Bibliographically approved
2. Parameter Estimation of Multiphase Machines Applicable to Variable Phase-Pole Machines
Open this publication in new window or tab >>Parameter Estimation of Multiphase Machines Applicable to Variable Phase-Pole Machines
2023 (English)In: IEEE transactions on energy conversion, ISSN 0885-8969, E-ISSN 1558-0059, Vol. 38, no 4, p. 2822-2831Article in journal (Refereed) Published
Abstract [en]

Variable phase-pole machines are envisioned in applications requiring a large torque-speed operating area. The control of these machines relies on accurate models and parameters but research on their parameter identification is scarce. This paper presents an offline parameter-identification method for variable phase-pole machines adopting a harmonic-plane decomposition model. The method employs standard tests with single-frequency three-phase excitation in multiple pole configurations and uses the results to minimize a constrained, regularized weighted least-squares problem. It relies on identifying a set of parameters common to all phase-pole configurations and transforming them into the adopted model. Good agreement is exhibited when comparing experimental results to an analytical harmonic-plane decomposition model using the inferred parameters. Steady-state, as well as pole transitions, are compared. The paper emphasizes the importance of performing measurements in multiple pole configurations and weighing these measurements appropriately to render an accurate set of parameters.

Place, publisher, year, edition, pages
Institute of Electrical and Electronics Engineers (IEEE), 2023
Keywords
Parameter estimation, multiphase electrical machines, variable phase-pole machines, harmonic plane decomposition
National Category
Other Electrical Engineering, Electronic Engineering, Information Engineering
Research subject
Electrical Engineering
Identifiers
urn:nbn:se:kth:diva-329847 (URN)10.1109/tec.2023.3288368 (DOI)2-s2.0-85162870029 (Scopus ID)
Note

QC 20230626

Available from: 2023-06-26 Created: 2023-06-26 Last updated: 2024-09-10Bibliographically approved
3. Parameter Estimation of Multiphase Induction Machines with Inter-Plane Cross Saturation: Analysis and Improvement
Open this publication in new window or tab >>Parameter Estimation of Multiphase Induction Machines with Inter-Plane Cross Saturation: Analysis and Improvement
2023 (English)In: IECON 2023: 49th Annual Conference of the IEEE Industrial Electronics Society, Institute of Electrical and Electronics Engineers (IEEE) , 2023Conference paper, Published paper (Refereed)
Abstract [en]

This paper analyzes the sensitivity of the rotor parameter estimation of an advanced Γ−model for multiphase induction machines. These machines exhibit inter-plane cross saturation and certain sub-topologies, such as variable phase-pole machines, may operate briefly with high rotor frequencies, which warrants the use of such models. It is shown that accurate non-linearity compensation of the voltage vector and characterization of the drive's input/output-delays is paramount for the rotor parameter estimation. Moreover, standstill experiments using a simple inverter excitation signal are designed to improve on the offline parameter estimation by means of a prediction error method. The presented method may find usage in (self-) commissioning of multiphase induction machines.

Place, publisher, year, edition, pages
Institute of Electrical and Electronics Engineers (IEEE), 2023
Keywords
multiphase machines, induction machines, inter-plane cross saturation, parameter estimation, variable phase-pole machines
National Category
Other Electrical Engineering, Electronic Engineering, Information Engineering
Research subject
Electrical Engineering
Identifiers
urn:nbn:se:kth:diva-339947 (URN)10.1109/IECON51785.2023.10312412 (DOI)2-s2.0-85179511677 (Scopus ID)
Conference
IECON 2023- 49th Annual Conference of the IEEE Industrial Electronics Society, 16-19 October 2023, Singapore, Singapore
Note

Part of ISBN 979-8-3503-3182-0

QC 20231124

Available from: 2023-11-23 Created: 2023-11-23 Last updated: 2024-09-10Bibliographically approved
4. Parameter Estimation of Multiphase Machines Applicable to Variable Phase-Pole Machines
Open this publication in new window or tab >>Parameter Estimation of Multiphase Machines Applicable to Variable Phase-Pole Machines
2022 (English)In: 2022 International Conference on Electrical Machines (ICEM), Institute of Electrical and Electronics Engineers (IEEE) , 2022, p. 949-955Conference paper, Published paper (Refereed)
Abstract [en]

Variable phase-pole machines are envisioned in applications requiring a large torque-speed operating area. The control of these machines relies on accurate models and parameters but research on parameter identification methods is scarce. This paper presents an offline parameter-identification method for variable phase-pole machines adopting a harmonic plane decomposition model. The method employs standard tests with single-frequency excitation in multiple pole configurations and uses the results to minimize a constrained, regularized weighted least-squares problem. Good agreement is exhibited in simulations when comparing a harmonic-plane decomposition model of a variable phase-pole machine using the inferred parameters to a benchmark vector-space decomposition model implementing parameters identified in the standard tests. The paper emphasizes the importance of performing measurements in multiple pole configurations and weighing these measurements appropriately to render an accurate set of parameters.

Place, publisher, year, edition, pages
Institute of Electrical and Electronics Engineers (IEEE), 2022
Keywords
Parameter estimation, complex winding factor, harmonic plane decomposition, variable phase-pole electrical machines
National Category
Electrical Engineering, Electronic Engineering, Information Engineering
Research subject
Electrical Engineering
Identifiers
urn:nbn:se:kth:diva-320383 (URN)10.1109/ICEM51905.2022.9910883 (DOI)2-s2.0-85141035238 (Scopus ID)
Conference
2022 International Conference on Electrical Machines (ICEM), 5-8 Sept. 2022
Note

Part of proceedings: ISBN 978-1-6654-1432-6

QC 20221021

Available from: 2022-10-20 Created: 2022-10-20 Last updated: 2024-09-10Bibliographically approved
5. Enabling Variable Phase-Pole Drives with the Harmonic Plane Decomposition
Open this publication in new window or tab >>Enabling Variable Phase-Pole Drives with the Harmonic Plane Decomposition
2024 (English)In: IEEE Access, E-ISSN 2169-3536, Vol. 12, p. 40049-40063Article in journal (Refereed) Published
Abstract [en]

Magnet-free variable phase-pole machines are competitive alternatives in electric vehicles where torque-speed operating region, reliability, cost, and energy efficiency are key metrics. However, their modeling and control have so far relied on existing fixed-phase and pole-symmetrical models, limiting their drive capabilities especially when switching the number of poles on the fly. This paper establishes the harmonic plane decomposition theory as a space-discrete Fourier transformation interpretation of the Clarke transformation, decomposing all pole-pair fields into a fixed number of orthogonal subspaces with invariant parameters. The model remains unaltered for all phase-pole configurations, guaranteeing continuity even under phase-pole transitions. Relations of the state and input space vectors, and model parameters to those of the vector space decomposition theory used for multiphase machines are established via the use of the complex winding factor. Experiments confirm the modeling theory and demonstrate its practical usefulness by performing a field-oriented-controlled phase-pole transition. Non-trivial configurations with more than one slot/pole/phase and a fractional phase number are also demonstrated.

Place, publisher, year, edition, pages
Institute of Electrical and Electronics Engineers (IEEE), 2024
Keywords
discrete Fourier transform, harmonic plane decomposition, multiphase electric machines, variable phase-pole machine, vector space decomposition
National Category
Electrical Engineering, Electronic Engineering, Information Engineering
Research subject
Electrical Engineering
Identifiers
urn:nbn:se:kth:diva-344315 (URN)10.1109/access.2024.3375752 (DOI)001189352300001 ()2-s2.0-85188000125 (Scopus ID)
Note

QC 20240313

Available from: 2024-03-13 Created: 2024-03-13 Last updated: 2024-09-10Bibliographically approved
6. Guaranteed Torque and Demagnetization Current During Active Short-Circuit Transients of PMSMs
Open this publication in new window or tab >>Guaranteed Torque and Demagnetization Current During Active Short-Circuit Transients of PMSMs
Show others...
2024 (English)In: Proceedings IEEE International Conference on Industrial Technology, ICIT 2024, Institute of Electrical and Electronics Engineers (IEEE) , 2024Conference paper, Published paper (Refereed)
Abstract [en]

Active short-circuit is a standard emergency procedure applied to three-phase permanent-magnet synchronous machine drives in battery-electric and hybrid electric drivetrains to comply with stringent automotive safety standards, such as the ISO 26262. Unfortunately, the ensuing torque and current transients can harm the passengers and the driveline itself. This paper develops and validates a mathematical and graphical method to determine the safe operating area of pre-fault current conditions to guarantee that the torque remains within user-defined acceptable bounds and that the permanent magnets do not demagnetize during the short-circuit transient. The new method utilizes an inductance-based dynamic model of the motor, including magnetic saturation. The proposed methodology promises to be useful in the design, initial testing, and commissioning of permanent-magnet synchronous machines used for the propulsion of automobiles.

Place, publisher, year, edition, pages
Institute of Electrical and Electronics Engineers (IEEE), 2024
Keywords
Torque;Computational modeling;Trajectory;Transient analysis;Vehicle dynamics;Synchronous machines;Demagnetization;active short-circuit;cross saturation;demagnetization;PMSM;uncontrolled generation
National Category
Electrical Engineering, Electronic Engineering, Information Engineering
Identifiers
urn:nbn:se:kth:diva-347258 (URN)10.1109/ICIT58233.2024.10540677 (DOI)2-s2.0-85195790769 (Scopus ID)
Conference
IEEE International Conference on Industrial Technology, ICIT 2024, Bristol, UK, March 25-27, 2024
Note

Part of ISBN 979-8-3503-4026-6

QC 20240611

Available from: 2024-06-06 Created: 2024-06-06 Last updated: 2024-09-10Bibliographically approved
7. Optimal harmonic injection in VPPMs using electrical parameters and quadratic optimization
Open this publication in new window or tab >>Optimal harmonic injection in VPPMs using electrical parameters and quadratic optimization
2024 (English)In: Proceedings 13th International Conference on Power Electronics, Machines and Drives (PEMD 2024), Institution of Engineering and Technology (IET) , 2024Conference paper, Published paper (Refereed)
Abstract [en]

To exploit the benefits of field-oriented controlled variable phase-pole machines, optimal current references need to be generated.This article proposes a steady-state Joule-loss minimization obeying inverter constraints and air-gap flux-density limitations.Different from previous attempts, the phase-pole configuration is not limited to exciting a single pole order. Instead, multiplepole-order fields are superimposed to accomplish the optimal current injection at all evaluated torque-frequency operating points.Two main conclusions are drawn from the solution to the optimization problem using experimentally identified parameters of avariable phase-pole machine. To begin with, adequate current injection extends the operating range. Secondly, the RMS currentis reduced, particularly in the high-torque region.

Place, publisher, year, edition, pages
Institution of Engineering and Technology (IET), 2024
Keywords
Harmonic injection, harmonic plane decomposition, minimum-loss operation, multiphase electrical machines, variable phase-pole machines
National Category
Other Electrical Engineering, Electronic Engineering, Information Engineering
Identifiers
urn:nbn:se:kth:diva-352804 (URN)10.1049/icp.2024.2203 (DOI)2-s2.0-85204281141 (Scopus ID)
Conference
13th International Conference on Power Electronics, Machines and Drives (PEMD 2024), Nottingham, UK, 10-13 June 2024
Note

Part of proceedings ISBN 978-1-83724-121-7

QC 20240913

Available from: 2024-09-06 Created: 2024-09-06 Last updated: 2024-09-25Bibliographically approved
8. Multiphase Machines: Stator and Rotor Inter-Plane Cross Saturation
Open this publication in new window or tab >>Multiphase Machines: Stator and Rotor Inter-Plane Cross Saturation
(English)Manuscript (preprint) (Other academic)
National Category
Other Electrical Engineering, Electronic Engineering, Information Engineering
Identifiers
urn:nbn:se:kth:diva-352813 (URN)
Note

Submitted to IEEE Access, EISSN 2169-3536

QC 20240913

Available from: 2024-09-06 Created: 2024-09-06 Last updated: 2024-09-13Bibliographically approved
9. Active Short-Circuit Strategy For PMSMs Enabling Bounded Transient Torque and Demagnetization Current
Open this publication in new window or tab >>Active Short-Circuit Strategy For PMSMs Enabling Bounded Transient Torque and Demagnetization Current
Show others...
2024 (English)In: IEEE Access, E-ISSN 2169-3536Article in journal (Refereed) Published
Abstract [en]

The active short-circuit is a standard safety measure for permanent-magnet synchronous machine drives in electric vehicles, but it can lead to harmful torque and current transients. This paper introduces a mathematical and graphical method to determine the safe operating area of pre-fault current conditions, complying with user-defined torque bounds and preventing magnet demagnetization during short-circuit transients. The method incorporates an inductance-based motor model considering magnetic saturation, which is used to outline a strategy for transitioning to safe initial conditions in the minimum time for the available voltage. Experiments on a 35 kW permanent-magnet synchronous machine support the efficacy of the proposed strategy, offering promise for its use in automotive propulsion where compliance to safety standards such as the ISO 26262 is paramount.

Place, publisher, year, edition, pages
Institute of Electrical and Electronics Engineers (IEEE), 2024
Keywords
active short-circuit, cross saturation, demagnetization, direct flux-vector control, PMSM
National Category
Other Electrical Engineering, Electronic Engineering, Information Engineering
Identifiers
urn:nbn:se:kth:diva-351561 (URN)10.1109/access.2024.3440015 (DOI)001291878200001 ()2-s2.0-85200799805 (Scopus ID)
Note

QC 20240813

Available from: 2024-08-09 Created: 2024-08-09 Last updated: 2024-09-10Bibliographically approved
10. Pole-Transition Control of Variable-Pole Machines Using Harmonic-Plane Decomposition
Open this publication in new window or tab >>Pole-Transition Control of Variable-Pole Machines Using Harmonic-Plane Decomposition
2023 (English)In: IEEE Transactions on Industrial Electronics, ISSN 0278-0046, E-ISSN 1557-9948, Vol. 70, no 8, p. 7753-7760Article in journal (Refereed) Published
Abstract [en]

Variable phase-pole machines have the potential to extend the operational range to higher speeds through magnetic pole changes. The state-of-the-art vector space decomposition cannot model the transient behavior of the pole change for any possible phase-pole configuration as it creates a discontinuity. The proposed harmonic plane decomposition theory solves this issue by generalizing the vector-space decomposition to the fullest extend by using its discrete Fourier transformation interpretation. The theory for indirect rotor field-oriented control is developed using the harmonic-plane decomposition. A controlled, loaded pole change on a wound independently-controlled stator-coils machine using two transition strategies shows the harmonic-plane decomposition-based controller’s ability to maintain torque in the transition. Additionally, the proposed controller accomplishes real harmonic injection and balanced steady-state operation.

Place, publisher, year, edition, pages
Institute of Electrical and Electronics Engineers (IEEE), 2023
Keywords
DFT, field oriented control, harmonic plane decomposition, multiphase electric machines, pole change, variable phase-pole machine
National Category
Control Engineering
Research subject
Electrical Engineering; Industrial Engineering and Management
Identifiers
urn:nbn:se:kth:diva-322382 (URN)10.1109/TIE.2022.3231328 (DOI)001002590500020 ()2-s2.0-85146215223 (Scopus ID)
Note

QC 20221213

Available from: 2022-12-13 Created: 2022-12-13 Last updated: 2024-09-10Bibliographically approved

Open Access in DiVA

kappa(21544 kB)65 downloads
File information
File name SUMMARY01.pdfFile size 21544 kBChecksum SHA-512
1fe7ec1852eee79f297e6e17b512c4f7569ac10de024d2167cdc48021e784ffe584aa468202fb24745db5eff72b19aaa777cb62a1361c32ca2b5bd736fc717a0
Type summaryMimetype application/pdf

Authority records

Falk Olson, Gustaf

Search in DiVA

By author/editor
Falk Olson, Gustaf
By organisation
Electric Power and Energy Systems
Electrical Engineering, Electronic Engineering, Information Engineering

Search outside of DiVA

GoogleGoogle Scholar
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

isbn
urn-nbn

Altmetric score

isbn
urn-nbn
Total: 93 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf