Electrical Stimulator and Surface Electromyography Integrated Circuits for Musculoskeletal Healthcare
2024 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]
This thesis presents an innovative approach to the development of a fully integrated multi-channel neuromuscular electrical stimulator (NMES) system and a multi-channel surface electromyography (sEMG) acquisition system for musculoskeletal (MSK) healthcare applications. The main objective is to integrate therapeutic and diagnostic tools into a compact wearable device, enabling closed-loop electrical therapy. By leveraging advancements in semiconductor technology, this thesis explores the implementation of application-specific integrated circuits (ASIC) to combine high-voltage (HV) NMES and low-voltage sEMG signal acquisition circuits on a single chip using a 180 nm bipolar-CMOS-DMOS technology.
The research addresses several key challenges in existing NMES and sEMG systems: the need for a compact, multi-channel NMES device; the need for safe electrical muscular stimulation; the need for spatiotemporal information through multi-channel acquisition; and the need for high channel counts and efficient chip area utilization. To overcome these challenges and advance the NMES technology, this thesis proposes several innovative circuit solutions, including a configurable HV-tolerant multi-channel stimulator, an integrated fail-safe protection circuit, and an inductorless on-chip HV generator. Additionally, channel-sharing techniques for multi-channel biopotential acquisition are comprehensively explored, and a novel frequency-division multiplexed architecture is proposed, featuring low noise, low power consumption, and minimized system complexity.
A significant contribution of this thesis work is the integration of multi-channel NMES and sEMG systems in an ASIC, leading to the development of a real-time embedded system for wearable medical applications. This embedded system incorporates the proposed ASIC for bidirectional interfacing with muscles and an off-the-shelf microcontroller for data acquisition, signal processing, and stimulation pattern control. The proposed system facilitates the continuous collection of vital physiological conditions (e.g., motion intention, contraction force, and fatigue level) of the human muscular system, enabling timely adjustments and interventions via electrical stimulation. In-vivo experimental results showcase its potential to enhance electrical therapy outcomes through closed-loop control and pave the way for improved patient care.
Abstract [sv]
Denna avhandling presenterar ett innovativt tillvägagångssätt för utveckling av ett fullt integrerat flerkanals neuromuskulärt elektriskt stimulator (NMES) system och ett flerkanals ytelektromyografi (sEMG) insamlingssystem för applikationer inom muskuloskeletal hälsovård. Huvudmålet är att integrera terapeutiska och diagnostiska verktyg i en kompakt bärbar enhet, vilket möjliggör sluten elektrisk terapi. Genom att utnyttja framsteg inom halvledarteknologi undersöker denna avhandling implementeringen av applikationsspecifika integrerade kretsar (ASIC) för att kombinera högspännings (HV) NMES och lågspännings sEMG-signalupptagningskretsar på ett enda chip med hjälp av en 180 nm bipolär-CMOS-DMOS-teknologi.
Forskningen adresserar flera centrala utmaningar i befintliga NMES- och sEMG-system: behovet av en kompakt flerkanals NMES-enhet; behovet av säker elektrisk muskelstimulering; behovet av spatiotemporal information genom flerkanals signalupptagning; samt behovet av hög kanalantal och effektiv chipytanvändning. För att övervinna dessa utmaningar och främja NMES-teknologin, föreslår denna avhandling flera innovativa kretsslösningar, inklusive en konfigurerbar HV-tolerant flerkanals stimulator, en integrerad failsafe skyddskrets och en induktorlös on-chip HV-generator. Dessutom utforskas kanaldelningstekniker omfattande, och ett nytt frekvensdelningsmultiplexat flerkanals biopotential-insamlingssystem utvecklas, som kännetecknas av låg brusnivå, låg strömförbrukning och minimerad systemkomplexitet.
En betydande insats i denna avhandling är integrationen av flerkanals NMES- och sEMG-system i en ASIC, vilket leder till utvecklingen av ett realtids inbäddat system för bärbara medicinska applikationer. Detta inbäddade system inkorporerar den föreslagna ASIC för tvåvägsgränssnitt med muskler och en standard mikrokontroller för datainsamling, signalbehandling och styrning av stimulansmönster. Det föreslagna systemet underlättar kontinuerlig insamling av vitala fysiologiska förhållanden (t.ex. rörelseavsikt, kontraktionskraft och trötthetsnivå) i människans muskelsystem, vilket möjliggör snabba justeringar och interventioner via elektrisk stimulering. In-vivo experimentella resultat visar dess potential att förbättra resultaten av elektrisk terapi genom sluten styrning och banar väg för förbättrad patientvård.
Place, publisher, year, edition, pages
Stockholm: KTH Royal Institute of Technology, 2024. , p. xvii, 94
Series
TRITA-EECS-AVL ; 2024:65
Keywords [en]
neuromuscular electrical stimulation, surface electromyography, musculoskeletal healthcare, application-specific integrated circuits, bipolar-CMOS-DMOS technology, high-voltage generator, biopotential acquisition, frequency-division multiplexing, closed-loop electrical therapy, wearable medical device, embedded system
Keywords [sv]
neuromuskulär elektrisk stimulering, ytelektromyografi, muskuloskeletal hälsovård, applikationsspecifika integrerade kretsar, bipolär-CMOS-DMOS-teknologi, högspänningsgenerator, biopotentialinsamlingssystem, frekvensdelningsmultiplexering, sluten loop elektrisk terapi, bärbar medicinsk enhet, inbäddat system
National Category
Electrical Engineering, Electronic Engineering, Information Engineering
Research subject
Information and Communication Technology
Identifiers
URN: urn:nbn:se:kth:diva-353846ISBN: 978-91-8106-035-5 (print)OAI: oai:DiVA.org:kth-353846DiVA, id: diva2:1900742
Public defence
2024-10-18, Ka-Sal C, Electrum, Kistagången 16, Kista, 10:00 (English)
Opponent
Supervisors
Note
QC 20240925
2024-09-252024-09-242024-09-25Bibliographically approved
List of papers