Ion transport in novel lithium-ion battery electrolytes: Harnessing polymerization-induced phase separation for hybrid systems
2024 (English)Doctoral thesis, comprehensive summary (Other academic)
Sustainable development
SDG 11: Sustainable cities and communities, SDG 9: Industry, innovation and infrastructure, SDG 12: Responsible consumption and production, SDG 7: Affordable and clean energy
Abstract [en]
Lithium-ion batteries have enabled the rapid adoption of consumer electronics and electromobility. In many next-generation lithium-based batteries, the development of high-performing and safe electrolytes is key. Although liquid electrolytes have high ionic conductivity, they suffer from stability and safety issues. Conversely, solid polymer electrolytes offer a safer and more stable alternative, but exhibit inherently low ionic conductivity. This thesis has focused on developing new hybrid liquid and polymer electrolyte systems.
The first part focuses on understanding the ion transport in new liquid electrolytes and oligomers. Dicarbonate structures with varying spacer and end group were investigated and compared to traditional linear carbonate electrolytes. The dicarbonate electrolytes exhibit high thermal stabilities but simultaneously a non-ideal ion transport with extensive ion pairing. The effect of molecular weight (Mn) and end group on the ion transport in two polymers with different backbones were also investigated. The investigation elucidated the effect of coordination strength on the partial lithium ion transport. It also showed that when changing the molecular weight (Mn), distinct ion transport mechanism regimes did not exist.
The second part focuses on the development of hybrid polymer-liquid electrolytes (HEs) using polymerization-induced phase separation (PIPS). It was shown that both the monomer and porogen structure has a significant effect on thermomechanical and electrochemical properties of the HEs. Finally, the use of UV-initiated PIPS was investigated as an efficient technique to manufacture porous thermoset membranes as battery separators. A membrane with low ionic resistance and promising battery cycling performance was developed. Overall, this thesis shows that hybrid systems have a role to play in systems where multiple properties need to be fulfilled simultaneously and that PIPS is a promising tool to fabricate such materials.
Abstract [sv]
Litiumjonbatterier har möjliggjort den breda tillgången av hemelektronik och elektromobilitet. En nyckel till utvecklingen av många nästagenerations litiumbaserade batterier är beroende av högpresterande och säkra elektrolyter. Även om vätskebaserade elektrolyter har hög jonledningsförmåga, lider de av stabilitets- och säkerhetsproblem. Samtidigt erbjuder fasta polymerelektrolyter ett säkrare och mer stabilt alternativ, men uppvisar låg jonledningsförmåga. Denna avhandling har fokuserat på att utveckla nya hybrida vätske- och polymerelektrolytsystem.
Den första delen fokuserar på att förstå jontransporten i nya vätskebaserade elektrolyter och oligomerer. Dikarbonatstrukturer med varierande ”spacer” och ändgrupp undersöktes och jämfördes med traditionella karbonatelektrolyter. Dikarbonatelektrolyterna uppvisar hög termisk stabilitet men samtidigt en icke-ideal jontransport med omfattande jonparning. Effekten av molekylvikt (Mn) och ändgrupp på jontransporten i två polymerer med olika kedjestruktur undersöktes också. Studien klargjorde effekten av koordinationsstyrka på den partiella litiumjontransporten. Det visade också att när man ändrade molekylvikten (Mn), förändrades inte jontransportmekanismer.
Den andra delen fokuserar på utvecklingen av hybrida vätske-polymerelektrolyter (HE) med hjälp av polymerisationsinducerad fasseparation (PIPS). Det visades att både monomer- och porogenstrukturen har en betydelsefull påverkan på termomekaniska och elektrokemiska egenskaper hos HE:erna. Slutligen undersöktes användningen av UV-initierad PIPS som en effektiv metod för att tillverka porösa härdplastmembran för att användas som batteriseparatorer. Ett membran med låg jonresistens och lovande battericyklingsprestanda utvecklades. Sammantaget visar denna avhandling att hybrida system har en roll att spela i system där flera egenskaper måste uppfyllas samtidigt och PIPS är ett lovande verktyg för att tillverka sådana material.
Place, publisher, year, edition, pages
Stockholm: KTH Royal Institute of Technology, 2024. , p. 69
Series
TRITA-CBH-FOU ; 2024:45
Keywords [en]
Lithium-ion, lithium metal, structural battery, hybrid electrolyte, oligomer, ion transport, molecular weight, polymerization-induced phase separation, separator
Keywords [sv]
Litiumjon, litiummetal, strukturella batterier, hybrida elektrolyter, oligomerer, jontransport, molekylvikt, polymerisationsinducerad fasseparation
National Category
Materials Chemistry Polymer Chemistry Energy Engineering
Research subject
Fibre and Polymer Science
Identifiers
URN: urn:nbn:se:kth:diva-354363ISBN: 978-91-8106-070-6 (print)OAI: oai:DiVA.org:kth-354363DiVA, id: diva2:1903437
Public defence
2024-11-01, F3 (Flodis), Lindstedtsvägen 26, https://kth-se.zoom.us/j/61354274681, Stockholm, 10:00 (English)
Opponent
Supervisors
Note
QC 20241008
2024-10-082024-10-042024-10-14Bibliographically approved
List of papers