kth.sePublications
Planned maintenance
A system upgrade is planned for 10/12-2024, at 12:00-13:00. During this time DiVA will be unavailable.
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Numerical approximation of quantum canonical statistical observables with mean-field molecular dynamics and machine learning
KTH, School of Engineering Sciences (SCI), Mathematics (Dept.), Numerical Analysis, Optimization and Systems Theory.ORCID iD: 0000-0002-1899-2314
2024 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

Molecular electronic structure calculations are fundamental to modern quantum chemistry and materials science, offering detailed quantum-mechanical descriptions of electron-molecule interactions. Central to these calculations is solving the electronic Schrödinger equation, under the renowned Born-Oppenheimer approximation, where the eigenvalues represent system energy levels and the eigenfunctions describe electron wave functions. Given the complexity of electron-electron interactions, exact solutions are often limited to simple systems. Therefore, reliable numerical approximations of electronic eigenstates are crucial for bridging theoretical predictions with experimental observations, enabling accurate simulations of molecular properties, chemical reactivity, and material behaviour. Numerical analysis plays a pivotal role in this context, providing essential insights for refining computational methods and enhancing the accuracy of electronic structure calculations.

To accurately model electron-nuclei systems at high temperatures, it is important to account for contributions from electronic excited states. Particularly, we address this challenge by employing a mean-field Hamiltonian dynamics method, which incorporates the contributions of each electronic eigenstate into the effective potential energy surface, weighted by their respective canonical equilibrium probabilities under the Gibbs distribution. This thesis presents four papers that delve into the mean-field molecular dynamics framework.

In Paper A, we examine the canonical mean-field molecular dynamics approximation of correlation functions between quantum observables. Based on the Weyl quantization from semiclassical analysis, we provide an error estimate along with numerical validations for this classical mean-field approximation scheme.

In Paper B, we investigate the neural network approximation of target potential functions in the molecular dynamics of Hamiltonian systems, using a data set sampled from the corresponding equilibrium Gibbs distribution. We present a generalization error estimate for the random Fourier feature neural network approximation, with respect to varying network sizes and training data set sizes, and derive an error estimate for the resulting approximation of canonical correlation observable.

In Papers C and D, we focus on the approximation of the canonical mean-field electronic Hamiltonian, using the Feynman-Kac path integral formulation and quantum computation for evaluating the electronic partition function, respectively. Especially, we propose a computational approach to reduce the impact of noise level in the quantum computation model, shedding light on the corresponding quantum error mitigation framework.

Abstract [sv]

Molekylära elektronstrukturberäkningar är grundläggande för kvantkemi och materialvetenskap, och ger detaljerade kvantmekaniska beskrivningar av elektron-molekylinteraktioner. Centralt för dessa beräkningar är att lösa Schrödinger-ekvationen, med Born-Oppenheimer-approximationen, där egenvärdena representerar systemets energinivåer och egenfunktionerna beskriver elektronvågfunktioner. Med tanke på komplexiteten hos elektron-elektroninteraktioner är exakta lösningar ofta begränsade till enkla system. Därför är tillförlitliga numeriska approximationer av elektronegenvärden avgörande för att överbrygga teoretiska förutsägelser och experimentella observationer, vilket möjliggör noggranna simuleringar av molekylära egenskaper, av till exempel, kemisk reaktioner och materialegenskaper. Numerisk analys spelar en central roll i detta sammanhang och ger viktiga insikter för att förfina beräkningsmetoder och förbättra noggrannheten i elektroniska strukturberäkningar.

För att exakt modellera elektron-kärnsystem vid höga temperaturer är det viktigt att ta hänsyn till bidrag från exciterade elektrontillstånd. Speciellt tar vi oss an denna utmaning genom att använda en Hamiltonsk dynamik för medelfält, som införlivar bidragen från varje elektronisk egentillstånd i den effektiva potentiella energiytan, viktad med deras respektive kanoniska jämviktssannolikheter under Gibbsfördelningen. Denna avhandling presenterar fyra artiklar om molekylär medelfältsdynamik.

I artikel A undersöker vi kanoniska medelfältsdynamik för korrelationsfunktioner. Baserat på Weyl-kvantisering från semiklassisk analys härleder vi en feluppskattning tillsammans med numeriska valideringar för denna klassiska medelfältsapproximation.

I artikel B undersöker vi den neurala nätverksapproximationer av potentialfunktionen med hjälp av en datamängd samplade från motsvarande Gibbsfördelning. Vi presenterar en feluppskattning för den neurala nätverksapproximationen, med avseende på varierande nätverksstorlekar och datamängder, och härleder en feluppskattning för den resulterande approximationen av observablers korrelationsfunktioner.

I Paper C och D fokuserar vi på approximationen av kanoniska medelfältets Hamiltonian, med hjälp av Feynman-Kac vägintegralformuleringen och kvantdatorberäkning. Speciellt föreslår vi en beräkningsmetod för att minska påverkan av brusnivån i kvantdatorn.

Place, publisher, year, edition, pages
Stockholm, Sweden: KTH Royal Institute of Technology, 2024. , p. 101
Series
TRITA-SCI-FOU ; 2024:46
Keywords [en]
Quantum canonical correlation observable, ab initio molecular dynamics, electronic excited states, mean-field approximation, semiclassical analysis, neural network approximation, random Fourier feature, generalization error estimate, path integral, fermion sign problem, quantum error mitigation
Keywords [sv]
Ab initio molekyldynamik, exciterade elektrontillstånd, medelfältsapproximation, semiklassisk analys, neurala nätverksapproximationer, neurala nätverk, vägintegraler, fermionteckenproblemet, kvantdatorberäkning
National Category
Computational Mathematics
Research subject
Applied and Computational Mathematics; Applied and Computational Mathematics, Numerical Analysis
Identifiers
URN: urn:nbn:se:kth:diva-354984ISBN: 978-91-8106-059-1 (print)OAI: oai:DiVA.org:kth-354984DiVA, id: diva2:1906781
Public defence
2024-11-13, F3, Lindstedtsvägen 26, Stockholm, 10:00 (English)
Opponent
Supervisors
Funder
Swedish Research Council, 2019-03725
Note

QC 2024-10-18

Available from: 2024-10-18 Created: 2024-10-18 Last updated: 2024-10-28Bibliographically approved
List of papers
1. Canonical mean-field molecular dynamics derived from quantum mechanics
Open this publication in new window or tab >>Canonical mean-field molecular dynamics derived from quantum mechanics
2022 (English)In: ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS, ISSN 2822-7840, Vol. 56, no 6, p. 2197-2238Article in journal (Refereed) Published
Abstract [en]

Canonical quantum correlation observables can be approximated by classical molecular dynamics. In the case of low temperature the ab initio molecular dynamics potential energy is based on the ground state electron eigenvalue problem and the accuracy has been proven to be O(M-1), provided the first electron eigenvalue gap is sufficiently large compared to the given temperature and M is the ratio of nuclei and electron masses. For higher temperature eigenvalues corresponding to excited electron states are required to obtain O(M-1) accuracy and the derivations assume that all electron eigenvalues are separated, which for instance excludes conical intersections. This work studies a mean-field molecular dynamics approximation where the mean-field Hamiltonian for the nuclei is the partial trace h := Tr(He-beta H)/Tr(e(-beta H)) with respect to the electron degrees of freedom and H is the Weyl symbol corresponding to a quantum many body Hamiltonian (sic). It is proved that the mean-field molecular dynamics approximates canonical quantum correlation observables with accuracy O(M-1 + t epsilon(2)), for correlation time t where epsilon(2) is related to the variance of mean value approximation h. Furthermore, the proof derives a precise asymptotic representation of the Weyl symbol of the Gibbs density operator using a path integral formulation. Numerical experiments on a model problem with one nuclei and two electron states show that the mean-field dynamics has similar or better accuracy than standard molecular dynamics based on the ground state electron eigenvalue.

Place, publisher, year, edition, pages
EDP Sciences, 2022
Keywords
Quantum canonical ensemble, correlation observables, molecular dynamics, excited states, mean-field approximation, semi-classical analysis, Weyl calculus, path integral
National Category
Mathematics
Identifiers
urn:nbn:se:kth:diva-322938 (URN)10.1051/m2an/2022079 (DOI)000895479800001 ()2-s2.0-85145431921 (Scopus ID)
Note

QC 20230110

Available from: 2023-01-10 Created: 2023-01-10 Last updated: 2024-10-18Bibliographically approved
2. Convergence rates for random feature neural network approximation in molecular dynamics
Open this publication in new window or tab >>Convergence rates for random feature neural network approximation in molecular dynamics
(English)Manuscript (preprint) (Other academic)
Abstract [en]

Random feature neural network approximations of the potential in Hamiltonian systems yield approximations of molecular dynamics correlation observables that has the expected error O((K -1+J -1/2)1/2), for networks with K nodes using J data points, provided the Hessians of the potential and the observables are bounded. The loss function is based on the least squares error of the potential and regularizations, with the data points sampled from the Gibbs density. The proof uses an elementary new derivation of the generalization error for random feature networks that does not apply the Rademacher or related complexities.

Keywords
random Fourier feature representation, generalization error estimate, neural network approximation, canonical molecular dynamics, correlation observable
National Category
Computational Mathematics Probability Theory and Statistics
Research subject
Applied and Computational Mathematics, Numerical Analysis; Applied and Computational Mathematics
Identifiers
urn:nbn:se:kth:diva-354930 (URN)10.48550/arXiv.2406.14791 (DOI)
Funder
Swedish Research Council, 2019-03725
Note

QC 20241028

Available from: 2024-10-18 Created: 2024-10-18 Last updated: 2024-10-28Bibliographically approved
3. Path integral molecular dynamics approximations of quantum canonical observables
Open this publication in new window or tab >>Path integral molecular dynamics approximations of quantum canonical observables
(English)Manuscript (preprint) (Other academic)
Abstract [en]

Mean-field molecular dynamics based on path integrals is used to approximate canonical quantum observables for particle systems consisting of nuclei and electrons. A computational bottleneck is the Monte Carlo sampling from the Gibbs density of the electron operator, which due to the fermion sign problem has a computational complexity that scales exponentially with the number of electrons. In this work, we construct an algorithm that approximates the mean-field Hamiltonian by path integrals for fermions. The algorithm is based on the determinant of a matrix with components based on Brownian bridges connecting permuted electron coordinates. The computational work for n electrons is O(n3), which reduces the computational complexity associated with the fermion sign problem. We analyze a bias resulting from this approximation and provide a rough computational error indicator. It remains to rigorously explain the surprisingly high accuracy for high temperatures. The method becomes infeasible at low temperatures due to a large sample variance.

Keywords
ab initio molecular dynamics, canonical ensemble, Gibbs distribution, path integral, fermion sign problem
National Category
Computational Mathematics Probability Theory and Statistics
Research subject
Applied and Computational Mathematics, Numerical Analysis; Applied and Computational Mathematics
Identifiers
urn:nbn:se:kth:diva-354943 (URN)10.48550/arXiv.2311.17333 (DOI)
Funder
Swedish Research Council, 2019-03725
Note

QC 20241023

Available from: 2024-10-18 Created: 2024-10-18 Last updated: 2024-10-23Bibliographically approved
4. A quantum error mitigation model for mean-field electron structures
Open this publication in new window or tab >>A quantum error mitigation model for mean-field electron structures
Show others...
(English)Manuscript (preprint) (Other academic)
Abstract [en]

The noisy error in a quantum computer simulation of mean-field electron structures in the canonical ensemble is modelled by the intended electron structure problem weakly coupled to an unintended heat bath, which is assumed to preserve the indistinguishable property of the electrons. By estimating thirteen scalar heat bath parameters, for any number of electrons, the accuracy of the quantum computer model for the intended mean-field electron structure can be improved from O(ε) to O(ε2), where ε « 1 measures the coupling strength (i.e. the noise level). To improve the accuracy in the model to O(ε3) would require to estimate in addition 42 continuous functions on [0,1], which indicates it becomes more difficult in practice. By artificially increasing the electron mass the model is shown to be solvable for classical computers using classical molecular dynamics approximation of many antisymmetric "heavy electrons". The proof uses spectral perturbation theory and semiclassical analysis.

Keywords
quantum error mitigation, quantum canonical ensemble, molecular dynamics, mean-field approximation, semiclassical analysis
National Category
Computational Mathematics
Research subject
Applied and Computational Mathematics, Numerical Analysis; Applied and Computational Mathematics
Identifiers
urn:nbn:se:kth:diva-354970 (URN)
Funder
Swedish Research Council, 2019-03725
Note

QC 20241021

Available from: 2024-10-18 Created: 2024-10-18 Last updated: 2024-10-21Bibliographically approved

Open Access in DiVA

thesis_intro(4146 kB)57 downloads
File information
File name FULLTEXT01.pdfFile size 4146 kBChecksum SHA-512
b69061b77d7faa961696a51ae3733d41e4fbb105f80c7ecb472532fa0494f09f73653d07d29ac0c19be4ec47da55278d22d81ab33063c0fc4511feeb394a84bb
Type fulltextMimetype application/pdf

Search in DiVA

By author/editor
Huang, Xin
By organisation
Numerical Analysis, Optimization and Systems Theory
Computational Mathematics

Search outside of DiVA

GoogleGoogle Scholar
Total: 58 downloads
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

isbn
urn-nbn

Altmetric score

isbn
urn-nbn
Total: 467 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf