Numerical approximation of quantum canonical statistical observables with mean-field molecular dynamics and machine learning
2024 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]
Molecular electronic structure calculations are fundamental to modern quantum chemistry and materials science, offering detailed quantum-mechanical descriptions of electron-molecule interactions. Central to these calculations is solving the electronic Schrödinger equation, under the renowned Born-Oppenheimer approximation, where the eigenvalues represent system energy levels and the eigenfunctions describe electron wave functions. Given the complexity of electron-electron interactions, exact solutions are often limited to simple systems. Therefore, reliable numerical approximations of electronic eigenstates are crucial for bridging theoretical predictions with experimental observations, enabling accurate simulations of molecular properties, chemical reactivity, and material behaviour. Numerical analysis plays a pivotal role in this context, providing essential insights for refining computational methods and enhancing the accuracy of electronic structure calculations.
To accurately model electron-nuclei systems at high temperatures, it is important to account for contributions from electronic excited states. Particularly, we address this challenge by employing a mean-field Hamiltonian dynamics method, which incorporates the contributions of each electronic eigenstate into the effective potential energy surface, weighted by their respective canonical equilibrium probabilities under the Gibbs distribution. This thesis presents four papers that delve into the mean-field molecular dynamics framework.
In Paper A, we examine the canonical mean-field molecular dynamics approximation of correlation functions between quantum observables. Based on the Weyl quantization from semiclassical analysis, we provide an error estimate along with numerical validations for this classical mean-field approximation scheme.
In Paper B, we investigate the neural network approximation of target potential functions in the molecular dynamics of Hamiltonian systems, using a data set sampled from the corresponding equilibrium Gibbs distribution. We present a generalization error estimate for the random Fourier feature neural network approximation, with respect to varying network sizes and training data set sizes, and derive an error estimate for the resulting approximation of canonical correlation observable.
In Papers C and D, we focus on the approximation of the canonical mean-field electronic Hamiltonian, using the Feynman-Kac path integral formulation and quantum computation for evaluating the electronic partition function, respectively. Especially, we propose a computational approach to reduce the impact of noise level in the quantum computation model, shedding light on the corresponding quantum error mitigation framework.
Abstract [sv]
Molekylära elektronstrukturberäkningar är grundläggande för kvantkemi och materialvetenskap, och ger detaljerade kvantmekaniska beskrivningar av elektron-molekylinteraktioner. Centralt för dessa beräkningar är att lösa Schrödinger-ekvationen, med Born-Oppenheimer-approximationen, där egenvärdena representerar systemets energinivåer och egenfunktionerna beskriver elektronvågfunktioner. Med tanke på komplexiteten hos elektron-elektroninteraktioner är exakta lösningar ofta begränsade till enkla system. Därför är tillförlitliga numeriska approximationer av elektronegenvärden avgörande för att överbrygga teoretiska förutsägelser och experimentella observationer, vilket möjliggör noggranna simuleringar av molekylära egenskaper, av till exempel, kemisk reaktioner och materialegenskaper. Numerisk analys spelar en central roll i detta sammanhang och ger viktiga insikter för att förfina beräkningsmetoder och förbättra noggrannheten i elektroniska strukturberäkningar.
För att exakt modellera elektron-kärnsystem vid höga temperaturer är det viktigt att ta hänsyn till bidrag från exciterade elektrontillstånd. Speciellt tar vi oss an denna utmaning genom att använda en Hamiltonsk dynamik för medelfält, som införlivar bidragen från varje elektronisk egentillstånd i den effektiva potentiella energiytan, viktad med deras respektive kanoniska jämviktssannolikheter under Gibbsfördelningen. Denna avhandling presenterar fyra artiklar om molekylär medelfältsdynamik.
I artikel A undersöker vi kanoniska medelfältsdynamik för korrelationsfunktioner. Baserat på Weyl-kvantisering från semiklassisk analys härleder vi en feluppskattning tillsammans med numeriska valideringar för denna klassiska medelfältsapproximation.
I artikel B undersöker vi den neurala nätverksapproximationer av potentialfunktionen med hjälp av en datamängd samplade från motsvarande Gibbsfördelning. Vi presenterar en feluppskattning för den neurala nätverksapproximationen, med avseende på varierande nätverksstorlekar och datamängder, och härleder en feluppskattning för den resulterande approximationen av observablers korrelationsfunktioner.
I Paper C och D fokuserar vi på approximationen av kanoniska medelfältets Hamiltonian, med hjälp av Feynman-Kac vägintegralformuleringen och kvantdatorberäkning. Speciellt föreslår vi en beräkningsmetod för att minska påverkan av brusnivån i kvantdatorn.
Place, publisher, year, edition, pages
Stockholm, Sweden: KTH Royal Institute of Technology, 2024. , p. 101
Series
TRITA-SCI-FOU ; 2024:46
Keywords [en]
Quantum canonical correlation observable, ab initio molecular dynamics, electronic excited states, mean-field approximation, semiclassical analysis, neural network approximation, random Fourier feature, generalization error estimate, path integral, fermion sign problem, quantum error mitigation
Keywords [sv]
Ab initio molekyldynamik, exciterade elektrontillstånd, medelfältsapproximation, semiklassisk analys, neurala nätverksapproximationer, neurala nätverk, vägintegraler, fermionteckenproblemet, kvantdatorberäkning
National Category
Computational Mathematics
Research subject
Applied and Computational Mathematics; Applied and Computational Mathematics, Numerical Analysis
Identifiers
URN: urn:nbn:se:kth:diva-354984ISBN: 978-91-8106-059-1 (print)OAI: oai:DiVA.org:kth-354984DiVA, id: diva2:1906781
Public defence
2024-11-13, F3, Lindstedtsvägen 26, Stockholm, 10:00 (English)
Opponent
Supervisors
Funder
Swedish Research Council, 2019-03725
Note
QC 2024-10-18
2024-10-182024-10-182024-10-28Bibliographically approved
List of papers