Open this publication in new window or tab >>KTH, School of Engineering Sciences (SCI), Applied Physics.
Laboratoire de Physique de l’ENS, Département de Physique, École Normale Supérieure, Université PSL, Sorbonne Université, Université Paris Cité, CNRS, 75005, Paris, France.
mirSense, 2 Bd Thomas Gobert, 91120, Palaiseau, France.
Laboratoire de Physique de l’ENS, Département de Physique, École Normale Supérieure, Université PSL, Sorbonne Université, Université Paris Cité, CNRS, 75005, Paris, France.
Institute of Telecommunications, Riga Technical University, 1048, Riga, Latvia.
College of Information Science and Electrical Engineering, Zhejiang University, 310027, Hangzhou, China.
Institute of Telecommunications, Riga Technical University, 1048, Riga, Latvia.
KTH, School of Engineering Sciences (SCI), Applied Physics.
Institute of Telecommunications, Riga Technical University, 1048, Riga, Latvia.
College of Information Science and Electrical Engineering, Zhejiang University, 310027, Hangzhou, China.
Université Paris-Saclay, CNRS, Centre de Nanosciences et de Nanotechnologies, 91120, Palaiseau, France.
Université Paris-Saclay, CNRS, Centre de Nanosciences et de Nanotechnologies, 91120, Palaiseau, France.
Laboratoire de Physique de l’ENS, Département de Physique, École Normale Supérieure, Université PSL, Sorbonne Université, Université Paris Cité, CNRS, 75005, Paris, France.
KTH, School of Engineering Sciences (SCI), Applied Physics. ogy, 10Institute of Telecommunications, Riga Technical University, 1048, Riga, Latvia; RISE Research Institutes of Sweden, 164 40, Kista, Sweden.
KTH, School of Engineering Sciences (SCI), Applied Physics. Institute of Telecommunications, Riga Technical University, 1048, Riga, Latvia; RISE Research Institutes of Sweden, 164 40, Kista, Sweden.
Laboratoire de Physique de l’ENS, Département de Physique, École Normale Supérieure, Université PSL, Sorbonne Université, Université Paris Cité, CNRS, 75005, Paris, France.
Show others...
2024 (English)In: Nature Communications, E-ISSN 2041-1723, Vol. 15, no 1, article id 8040Article in journal (Refereed) Published
Abstract [en]
The large mid-infrared (MIR) spectral region, ranging from 2.5 µm to 25 µm, has remained under-exploited in the electromagnetic spectrum, primarily due to the absence of viable transceiver technologies. Notably, the 8–14 µm long-wave infrared (LWIR) atmospheric transmission window is particularly suitable for free-space optical (FSO) communication, owing to its combination of low atmospheric propagation loss and relatively high resilience to turbulence and other atmospheric disturbances. Here, we demonstrate a direct modulation and direct detection LWIR FSO communication system at 9.1 µm wavelength based on unipolar quantum optoelectronic devices with a unprecedented net bitrate exceeding 55 Gbit s−1. A directly modulated distributed feedback quantum cascade laser (DFB-QCL) with high modulation efficiency and improved RF-design was used as a transmitter while two high speed detectors utilizing meta-materials to enhance their responsivity are employed as receivers; a quantum cascade detector (QCD) and a quantum-well infrared photodetector (QWIP). We investigate system tradeoffs and constraints, and indicate pathways forward for this technology beyond 100 Gbit s−1 communication.
Place, publisher, year, edition, pages
Nature Research, 2024
National Category
Physical Sciences
Identifiers
urn:nbn:se:kth:diva-353915 (URN)10.1038/s41467-024-52053-7 (DOI)39271663 (PubMedID)2-s2.0-85203975941 (Scopus ID)
Note
QC 20240927
2024-09-252024-09-252024-10-30Bibliographically approved