kth.sePublications
456789107 of 17
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Energy dissipation phenomena in magnetic materials from computer simulations
KTH, School of Engineering Sciences (SCI), Applied Physics.ORCID iD: 0000-0003-1661-9572
2025 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

Magnetic materials are fundamental to various information technological applications, from data storage devices to energy-efficient computing. As the demand for high-speed, efficient technologies grows, understanding the mechanisms of energy dissipation within these materials becomes increasingly important. This thesis explores the underlying mechanisms of energy dissipation in magnetic materials through multi-scale simulations, with a particular focus on the spin and lattice subsystems.

A primary objective of this thesis is to challenge and broaden the conventional understanding of energy dissipation in magnetic materials. Traditionally, damping in spin systems has been treated as a simple scalar quantity; however, recent developments suggest a more intricate, non-local behavior correlated with neighboring environments. Despite these advancements, experimental verification of damping non-locality remains elusive, as its influence on experimental observable is not yet fully explored. To address this gap, the thesis investigates the effects of non-local spin damping on the lifetimes and dynamics of magnetic excitations, using common metals such as Fe, Co, Ni, and Fe-Co alloys as model systems.

In further examining alloy systems, it becomes clear that traditional alloy theories often overlook the influence of short-range interactions, resulting in inaccuracies in predicting the dissipative properties of magnetic materials. To bridge this gap, the thesis applies this non-local spin damping model to explore how variations in local atomic environments and alloy compositions, particularly in Fe-Co systems, affect energy dissipation. The results demonstrate that even subtle changes in atomic arrangement and composition can significantly influence spin damping, underscoring the crucial importance of fine-tuning energy dissipation in spin systems at the atomic scale.

Expanding the scope beyond spin system, the thesis also investigates energy dissipation within the lattice subsystem. The interaction between electron and lattice reveals a parallel complexity in lattice damping, mirroring the non-local behavior observed in spin systems. 

Collectively, these findings provide a comprehensive understanding of how both spin and lattice dynamics contribute to energy dissipation processes in magnetic materials. The insights obtained from this thesis not only offer theoretical clarity but also carry practical implications for the design of next-generation spintronic devices, where manipulating energy loss is essential for enhancing both speed and efficiency. By addressing these challenges, this thesis contributes to the development of more advanced materials and technologies that meet the increasing demands of modern computing and data storage.

Abstract [sv]

Magnetiska material är grundläggande för olika informationsteknologiska tillämpningar, från datalagringsenheter till energieffektiv datorbearbetning. I takt med att efterfrågan på snabba och effektiva teknologier ökar blir det allt viktigare att förstå mekanismerna bakom energiförlust i dessa material. Denna avhandling undersöker de grundläggande mekanismerna för energiförlust i magnetiska material genom multiskalsimuleringar, med ett särskilt fokus på spinn- och gitterdelarna av systemen.

Ett centralt syfte med denna avhandling är att utmana och bredda den konventionella förståelsen av energiförlust i magnetiska material. Traditionellt har dämpning i spinnsystem behandlats som en enkel skalär storhet, men senaste forskningsutvecklingar tyder på ett mer komplext, icke-lokalt beteende som är korrelerat med omgivande miljöer. Trots dessa framsteg saknas experimentell verifiering av icke-lokal dämpning, då dess påverkan på experimentellt observerbara fenomen ännu inte är fullständigt utforskad. För att fylla denna kunskapslucka undersöker avhandlingen effekterna av icke-lokal spindämpning på livslängder och dynamik hos magnetiska excitationer, med vanliga metaller som Fe, Co, Ni och Fe-Co-legeringar som modellsystem.

Vid vidare analys av legeringssystem framgår det att traditionella teorier ofta bortser från kortdistansinteraktionernas påverkan, vilket leder till felaktigheter i förutsägelserna av magnetiska materials dissipativa egenskaper. För att hantera denna utmaning tillämpar avhandlingen en modell för icke-lokal spindämpning för att undersöka hur variationer i lokala atomära miljöer och legeringssammansättningar, särskilt i Fe-Co-system, påverkar energiförlust. Resultaten visar att även subtila förändringar i atomarrangemang och sammansättning kan ha en betydande inverkan på spindämpning, vilket understryker vikten av att finjustera energiförlust i spinnsystem på atomnivå.

Genom att utöka perspektivet utöver spinnsystem undersöker avhandlingen även energiförlust i gitterdelen av systemen. Interaktionen mellan elektroner och gitter visar en liknande komplexitet i gitterdämpning, som speglar det icke-lokala beteendet som observerats i spinnsystem.

Sammanfattningsvis ger dessa resultat en omfattande förståelse för hur både spinn- och gitterdynamik bidrar till energiförlustprocesser i magnetiska material. Insikterna som erhållits från denna avhandling erbjuder inte bara teoretisk klarhet utan har också praktiska tillämpningar för utformningen av nästa generations spintroniska enheter, där kontroll av energiförlust är avgörande för att förbättra både hastighet och effektivitet. Genom att möta dessa utmaningar bidrar denna avhandling till utvecklingen av mer avancerade material och teknologier som möter de växande behoven inom modern datorbearbetning och datalagring.

Place, publisher, year, edition, pages
Sweden: KTH Royal Institute of Technology, 2025.
Series
TRITA-SCI-FOU ; 2024:63
National Category
Condensed Matter Physics
Research subject
Physics, Theoretical Physics
Identifiers
URN: urn:nbn:se:kth:diva-357665ISBN: 978-91-8106-167-3 (print)OAI: oai:DiVA.org:kth-357665DiVA, id: diva2:1920555
Public defence
2025-01-23, Pärlan, Albano Campus Hus 1, Albanovägen 26, Stockholm, 13:00 (English)
Opponent
Supervisors
Available from: 2024-12-12 Created: 2024-12-11 Last updated: 2024-12-12Bibliographically approved
List of papers
1. Influence of nonlocal damping on magnon properties of ferromagnets
Open this publication in new window or tab >>Influence of nonlocal damping on magnon properties of ferromagnets
Show others...
2023 (English)In: Physical Review B, ISSN 2469-9950, E-ISSN 2469-9969, Vol. 108, no 1, article id 014433Article in journal (Refereed) Published
Abstract [en]

We study the influence of nonlocal damping on the magnon properties of Fe, Co, Ni, and Fe1-xCox (x=30%,50%) alloys. The Gilbert damping parameter is typically considered as a local scalar both in experiment and in theoretical modeling. However, recent works have revealed that Gilbert damping is a nonlocal quantity that allows for energy dissipation between atomic sites. With the Gilbert damping parameters calculated from a state-of-the-art real-space electronic structure method, magnon lifetimes are evaluated from spin dynamics and linear response, where a good agreement is found between these two methods. It is found that nonlocal damping affects the magnon lifetimes in different ways depending on the system. Specifically, we find that in Fe, Co, and Ni, the nonlocal damping decreases the magnon lifetimes, while in Fe70Co30 and Fe50Co50 an opposite, nonlocal damping effect is observed, and our data show that it is much stronger in the former.

Place, publisher, year, edition, pages
American Physical Society (APS), 2023
National Category
Condensed Matter Physics
Identifiers
urn:nbn:se:kth:diva-335299 (URN)10.1103/PhysRevB.108.014433 (DOI)001122919500002 ()2-s2.0-85166950613 (Scopus ID)
Note

QC 20230905

Available from: 2023-09-05 Created: 2023-09-05 Last updated: 2024-12-11Bibliographically approved
2. Chemical disorder effects on Gilbert damping of FeCo alloys
Open this publication in new window or tab >>Chemical disorder effects on Gilbert damping of FeCo alloys
Show others...
2024 (English)In: Physical Review B, ISSN 2469-9950, E-ISSN 2469-9969, Vol. 110, no 17, article id 174428Article in journal (Refereed) Published
Abstract [en]

The impact of the local chemical environment on the Gilbert damping in the binary alloy Fe100-xCox is investigated, using computations based on density functional theory. By varying the alloy composition x as well as Fe-Co atom positions we reveal that the effective damping of the alloy is highly sensitive to the nearest-neighbor environment, especially to the amount of Co and the average distance between Co-Co atoms at nearest-neighbor sites. Both lead to a significant local increase (up to an order of magnitude) of the effective Gilbert damping, originating mainly from variations of the density of states at the Fermi energy. In a global perspective (i.e., making a configuration average for a real material), those differences in damping are masked by statistical averages. When low-temperature explicit atomistic dynamics simulations are performed, the impact of short-range disorder on local dynamics is observed to also alter the overall relaxation rate. Our results illustrate the possibility of local chemical engineering of the Gilbert damping, which may stimulate the study of new ways to tune and control materials aiming for spintronics applications.

Place, publisher, year, edition, pages
American Physical Society (APS), 2024
National Category
Condensed Matter Physics
Identifiers
urn:nbn:se:kth:diva-357172 (URN)10.1103/PhysRevB.110.174428 (DOI)001365434300006 ()2-s2.0-85210306991 (Scopus ID)
Note

QC 20241209

Available from: 2024-12-04 Created: 2024-12-04 Last updated: 2024-12-11Bibliographically approved

Open Access in DiVA

summary(5627 kB)44 downloads
File information
File name SUMMARY01.pdfFile size 5627 kBChecksum SHA-512
86c493af07723a9ad7dbea5f253b5b420e07e76ca51e183620b206d88e85b066a9c9952194b2f3a22faea738a7f11a19a7674cf497100278ef894645db6ff6de
Type summaryMimetype application/pdf

Search in DiVA

By author/editor
Lu, Zhiwei
By organisation
Applied Physics
Condensed Matter Physics

Search outside of DiVA

GoogleGoogle Scholar
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

isbn
urn-nbn

Altmetric score

isbn
urn-nbn
Total: 364 hits
456789107 of 17
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf