kth.sePublications
1011121314151613 of 17
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Effect of microstructure on pre- and post-punching fatigue behavior of hot-rolled thick-plate advanced high-strength steel
KTH, School of Industrial Engineering and Management (ITM), Materials Science and Engineering, Hultgren Laboratory for Materials Characterisation.ORCID iD: 0000-0001-6291-819X
2025 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

Advanced high-strength steels (AHSSs) are crucial for achieving superior strength-to-weight ratios in automotive applications, replacing traditional high-strength low-alloy (HSLA) steels. However, employing AHSSs in thick-plate configurations, e.g., heavy-duty truck chassis, presents challenges due to the potential mechanical property degradation caused by necessary sheet shearing processes, such as hole punching and trimming. This study examines the role of microstructure on the pre- and post-punching fatigue behavior of three AHSSs (800CP, 700MC, and 700MCPlus), each with distinct microstructural constituents but comparable yield and tensile strengths, and compares them with a conventional HSLA steel (500MC) commonly used in heavy-duty truck chassis. Additionally, the impact of different punching geometries on the post-punching fatigue performance of 500MC is assessed.Comprehensive microstructure characterization, tensile testing, high cycle fatigue (HCF) testing pre- and post-punching, fatigue crack growth rate (FCGR) testing, and neutron residual stress measurements are performed. The results show that punching significantly alters the microstructure, leading to microstructure refinement, sub-grain formation, defect creation, residual stresses, and the development of a work-hardened shear-affected zone around the punched edge, along with a rough fracture zone within the punched hole. At higher applied stresses and fewer load cycles (105 cycles), the HCF performance is primarily determined by the fatigue crack growth resistance of the pre-punched microstructure. In this regime, 700MCPlus, with the slowest FCGR, exhibits the highest post-punching fatigue strength, while the other steels with similar FCGR show nearly identical post-punching fatigue strength. Similarly, different punching conditions of 500MC exhibit similar post-punching fatigue strength in this regime, regardless of the punching condition. The investigation into the fatigue crack propagation mechanisms reveals that the enhanced performance of 700MCPlus is due to its unique texture, which limits slip activity, and the presence of martensite at grain boundaries, contributing to crack deflection. These findings underscore the potential for optimizing FCGR behavior through texture design and the dispersion of hard constituents. At lower applied stresses and fewer load cycles (106 - 2 × 106 cycles), however, post-punching fatigue performance is significantly influenced by the changes induced during punching. In homogeneous microstructures (e.g., ferrite in 500MC), surface roughness and, more importantly, residual stress are key factors affecting post-punching fatigue performance. Fatigue cracks initiate at mid-thickness parallel to the punching direction, which corresponds to the location of maximum measured tensile residual stresses, with increases in the residual stress leading to greater reductions in fatigue strength. Conversely, in more heterogeneous microstructures, strain localization plays a critical role when a significant strength difference exists between microconstituents (e.g., martensite and ferrite in 700MCPlus). Strain localization promotes sub-grain formation, reducing the local threshold stress intensity factor range (∆Kth) and facilitating crack initiation. In microstructures with smaller strength differences (e.g., ferrite and bainite in 800CP and 700MC), sub-grains, along with surface roughness and residual stress, significantly contribute to the reduction in post-punching fatigue strength. These findings provide valuable insights into the mechanisms underlying punching-induced fatigue performance degradation, offering potential strategies for optimizing the fatigue properties of AHSSs for new applications.

Abstract [sv]

Avancerade höghållfasta stål (AHSS) är avgörande för att uppnå utmärkt styrka-till-vikt-förhållande inom fordonsindustrin och ersätta traditionella höghåll\-fasta låglegerade stål (HSLA). Användningen av AHSS i grovplåts dimension, exempelvis i chassier för tunga lastbilar, medför dock utmaningar på grund av den potentiella försämringen av de mekaniska egenskaperna som orsakas av nödvändiga skärande bearbetningsprocesser, såsom hålstansning och kantbeskärning. Denna avhandling undersöker mikrostrukturens inverkan på utmattningsegenskaperna före och efter stansning hos tre olika AHSS (800CP, 700MC och 700MCPlus), vilka har olika mikrostrukturbeståndsdelar men jämförbara sträck- och brottgränser, och jämför dem med ett konventionellt HSLA-stål (500MC) som vanligtvis används i lastbilschassier. Dessutom utvärderas effekten av olika stansmetoder på utmattningsprestanda efter stansning hos 500MC. Omfattande mikrostrukturkarakterisering, dragprovning, högcykelutmattningstestning före och efter stansning, mätningar av utmattningsspricktillväxthastighet (FCGR) samt neutronmätningar av restspänningar har utförts. Resultaten visar att stansning avsevärt förändrar mikrostrukturen, vilket leder till mikrostruktur förfining, subkornsbildning, defekter, uppkomst av restspänningar och en deformationshärdad zon runt den stansade kanten, tillsammans med en grov yta, s.k. brottzon, i det stansade hålet. Vid högre belastningar och färre cykler (105 cyklar) styrs HCF-prestandan främst av motståndet mot utmattningsspricktillväxt i mikrostrukturen före stansning, och 700MCPlus, som har den långsammaste FCGR, uppvisar den högsta utmattningshållfastheten efter stansning i detta område, medan de övriga stålen med liknande FCGR uppvisar nästan identiska utmattningsprestanda. Dessutom konstateras att 500MC har liknande utmattningsprestanda efter stansning i detta område, oberoende av stansningsförhållandena. Undersökningen av mekanismerna för spricktillväxt vid utmattning avslöjar att 700MCPlus förbättrade prestanda beror på dess unika textur, som begränsar plastisk deformation, samt förekomsten av martensit vid korngränserna, vilket bidrar till att bromsa växande sprickor. Dessa resultat understryker potentialen att optimera FCGR-beteende genom texturdesign och väl distribuerade hårda mikrostrukturbeståndsdelar. I närheten av utmattningsgränsen (106 - 2 × 106 cyklar) påverkas dock utmattningsegenskaperna efter stansning starkt av de förändringar som induceras under stansningen. I homogena mikrostrukturer (till exempel ferrit i 500MC) är ytfinhet och, än viktigare, restspänningar avgörande faktorer för utmattningsprestanda efter stansning. Utmattningssprickor initieras vid halva tjockleken parallellt med stansriktningen, vilket motsvarar den plats där de maximala drag-restspänningarna uppmätts. Ökningar i dessa restspänningar leder till större minskningar i utmattningshållfastheten. I mer heterogena mikrostrukturer spelar deformationslokalisering en avgörande roll när en betydande skillnad i hållfasthet föreligger mellan mikrostrukturbeståndsdelarna (till exempel martensit och ferrit i 700MCPlus). Deformationslokaliseringen främjar subkornsbildning, vilket underlättar sprickinitiering. I mikrostrukturer med mindre hållfasthetsskillnader (till exempel ferrit och bainit i 800CP och 700MC) bidrar subkorn, tillsammans med ytfinhet och restspänningar, i hög grad till minskningen av utmattningsgränsen efter stansning. Dessa resultat ger värdefulla insikter i de mekanismer som ligger bakom försämringen av utmattningsegenskaper orsakad av stansning och erbjuder potentiella strategier för att optimera AHSS för nya tillämpningar.

Place, publisher, year, edition, pages
Stockholm: KTH Royal Institute of Technology, 2025. , p. 194
Series
TRITA-ITM-AVL ; 2024:29
Keywords [en]
Advanced high-strength steel (AHSS), Crack initiation, Crack propagation, Hole punching, Microscopy, Multiphase microstructure
Keywords [sv]
Avancerat höghållfast stål (AHSS), Sprickinitiering, Sprickpropagering, Hålstansning, Mikroskopi, Flerfasmaterial
National Category
Materials Engineering
Research subject
Materials Science and Engineering
Identifiers
URN: urn:nbn:se:kth:diva-357975ISBN: 978-91-8106-166-6 (print)OAI: oai:DiVA.org:kth-357975DiVA, id: diva2:1923448
Public defence
2025-01-31, F3, Lindstedtsvägen 26-28, Stockholm, 10:00 (English)
Opponent
Supervisors
Available from: 2025-01-08 Created: 2024-12-23 Last updated: 2025-01-08Bibliographically approved
List of papers
1. Dislocation structure after tensile testing in advanced high-strength steel: predictive insights for post-punching fatigue crack initiation
Open this publication in new window or tab >>Dislocation structure after tensile testing in advanced high-strength steel: predictive insights for post-punching fatigue crack initiation
(English)Manuscript (preprint) (Other academic)
Abstract [en]

This short communication introduces a quick method for qualitatively assessing the microstructure's sensitivity to sub-grain formation using the fracture surface of tensile test specimens. These sub-grains are believed to adversely impact post-punching fatigue crack initiation by reducing the local threshold stress intensity factor range (∆Kth), thereby promoting crack initiation.

Keywords
Deformation structure, Hole punching, Fatigue crack initiation, Multiphase microstructure, Microscopy
National Category
Materials Engineering
Identifiers
urn:nbn:se:kth:diva-357967 (URN)
Note

QC 20250110

Available from: 2024-12-21 Created: 2024-12-21 Last updated: 2025-01-10Bibliographically approved
2. Correlation between microstructure and fatigue properties of hot-rolled thick-plate complex-phase steel
Open this publication in new window or tab >>Correlation between microstructure and fatigue properties of hot-rolled thick-plate complex-phase steel
Show others...
2023 (English)In: Materials Science & Engineering: A, ISSN 0921-5093, E-ISSN 1873-4936, Vol. 885, article id 145624Article in journal (Refereed) Published
Abstract [en]

Complex-phase (CP) steels, with a multiphase microstructure, offer an excellent combination of high strength, ductility, and formability, making them an attractive alternative to conventional high-strength low-alloy (HSLA) steels in the automotive industry. However, the microstructure and fatigue property relation in CP steels is complex. This limits the full exploitation of CP steels in applications, such as heavy-vehicles, where excellent fatigue performance of thick-plates after punching holes is the critical parameter. In this work, we initiate the study of the relation between microstructure and fatigue properties of a commercial CP steel (800CP) and compare it with a conventional HSLA (500MC) steel. Fatigue property, tensile property, and fatigue crack growth rate (FCGR) testing are conducted and the performance of the two steels is rationalized using detailed microstructure characterization, before and after fatigue testing. FCGR testing shows that, despite a higher yield strength of the 800CP, both steels have a similar propagation rate due to a more tortuous crack propagation path and a higher quantity of secondary crack formation in the 800CP microstructure. The high cycle fatigue (HCF) testing shows that the fatigue limit in the 800CP is 25% higher. This increase in fatigue limit is attributed to the improved resistance to fatigue crack initiation in the 800CP due to its larger fraction of bainite.

Place, publisher, year, edition, pages
Elsevier BV, 2023
Keywords
Complex-phase (CP) steel, Fatigue crack growth rate, Fatigue crack initiation, High cycle fatigue (HCF), Multiphase microstructure
National Category
Other Materials Engineering Applied Mechanics
Identifiers
urn:nbn:se:kth:diva-337786 (URN)10.1016/j.msea.2023.145624 (DOI)001080014500001 ()2-s2.0-85170405965 (Scopus ID)
Note

QC 20231123

Available from: 2023-10-09 Created: 2023-10-09 Last updated: 2024-12-23Bibliographically approved
3. On the overlooked role of microstructure to explain post-punching fatigue performance of advanced high-strength steel
Open this publication in new window or tab >>On the overlooked role of microstructure to explain post-punching fatigue performance of advanced high-strength steel
Show others...
(English)Manuscript (preprint) (Other academic)
Abstract [en]

 This study compares the role of microstructure on post-punching fatigue properties in three advanced high-strength steels (AHSSs) with a high-strength low-alloy (HSLA) steel commonly used in heavy-duty truck chassis. Microstructure characterization, tensile testing, high cycle fatigue (HCF) testing, fatigue crack growth rate (FCGR) testing, and neutron residual stress measurements are conducted. Punching significantly alters the microstructure, causing refinement, sub-grain formation, defect creation, tensile residual stresses, and a work-hardened shear-affected zone around, and a rough fracture zone, inside the punched hole. At 105 cycles, the HCF performance is primarily governed by the fatigue crack growth resistance of the as-rolled microstructure, with minimal sensitivity to punching. However, near the fatigue limit, post-punching fatigue failure is strongly related to strain localization when significant strength difference exists between microconstituents (e.g., martensite and ferrite). Strain localization also promotes sub-grain formation, reducing the local threshold stress intensity factor range (∆Kth), thus facilitating fatigue crack initiation. In microstructures with smaller strength differences (e.g., ferrite and bainite), sub-grains, together with surface roughness and residual stress, contribute significantly to the post-punching fatigue limit reduction. These findings provide insights into mechanisms of punching-induced fatigue performance degradation, offering potential strategies to optimize fatigue performance of AHSS for new applications.

Keywords
Advanced high-strength steel (AHSS), Hole punching, Fatigue, Crack initiation, Multiphase microstructure, Microscopy.
National Category
Materials Engineering
Identifiers
urn:nbn:se:kth:diva-357965 (URN)
Note

QC 20250103

Available from: 2024-12-21 Created: 2024-12-21 Last updated: 2025-01-03Bibliographically approved
4. Effect of punching on residual stress, microstructural changes and fatigue properties of thick-plate high-strength low-alloy steel
Open this publication in new window or tab >>Effect of punching on residual stress, microstructural changes and fatigue properties of thick-plate high-strength low-alloy steel
Show others...
(English)Manuscript (preprint) (Other academic)
Abstract [en]

This study examines how different punching parameters affect the fatigue properties of thick-plate high-strength low-alloy (HSLA) steel used in heavy-duty truck chassis. Microstructural characterization, tensile testing, high cycle fatigue (HCF) testing before and after punching, and neutron residual stress measurements are performed. Punching causes significant microstructural changes, including refinement, sub-grain formation, defect creation, tensile residual stresses, a work-hardened shear-affected zone, and a rough fracture zone inside the punched hole. At higher stresses and fewer load cycles (105 cycles), the post-punching HCF performance is comparable to the smooth condition and less sensitive to surface roughness, residual stress, and microstructural changes from punching. However, at lower stresses and more load cycles (106 cycles), the post-punching fatigue strength is significantly decreased compared to the smooth condition, mainly due to surface roughness and, more importantly, residual stress, as fatigue cracks initiate at mid-thickness, corresponding to the location of the maximum measured tensile residual stress. Moreover, microstructural refinement and defects from strain localization after punching significantly affect post-punching HCF performance. The optimization of punching parameters to balance the hardening benefits with minimal defect and sub-grain formation can improve fatigue performance. These insights offer strategies to enhance fatigue performance of HSLA steel in heavy-duty truck chassis components.

Keywords
Hole punching, Fatigue, Residual stress, Crack initiation, Microscopy
National Category
Materials Engineering
Identifiers
urn:nbn:se:kth:diva-357966 (URN)
Note

QC 20250103

Available from: 2024-12-21 Created: 2024-12-21 Last updated: 2025-01-03Bibliographically approved
5. Microstructural influences on simultaneous strength and fatigue crack resistance in advanced high-strength steels
Open this publication in new window or tab >>Microstructural influences on simultaneous strength and fatigue crack resistance in advanced high-strength steels
Show others...
2024 (English)In: International Journal of Fatigue, ISSN 0142-1123, E-ISSN 1879-3452, Vol. 184, article id 108278Article in journal (Refereed) Published
Abstract [en]

In this study, we investigate the relation between microstructure and fatigue crack propagation mechanisms in three commercial hot-rolled thick-plate advanced high-strength steels (AHSSs), namely 800CP, 700MC, and 700MCPlus, and compare them with a conventional high-strength low-alloy (HSLA) steel, 500MC, commonly used in heavy-duty vehicle chassis production. Tensile testing, and fatigue crack growth rate (FCGR) assessments have been conducted, and mechanisms controlling the performance of these steels are comprehensively examined through microstructure characterization before and after fatigue testing. Notably, FCGR results reveal that, despite having the highest yield strength among the investigated steels, 700MCPlus exhibits the slowest FCGR in both near-threshold and stable crack growth regimes. This improved fatigue crack propagation resistance of 700MCPlus in terms of its threshold stress intensity factor range (Delta Kth) is attributed to its unique texture, which restricts slip activity, and the presence of martensite at grain boundaries, contributing to fatigue crack deflection. This martensite-induced crack deflection becomes more significant in the stable crack growth regime, where fatigue crack primarily propagates intergranularly as the stress intensity factor range (Delta K) increases. These mechanistic findings offer new design possibilities for AHSSs, combining excellent strength and fatigue performance.

Place, publisher, year, edition, pages
Elsevier BV, 2024
Keywords
Advanced high-strength steels (AHSSs), Fatigue, Multiphase microstructure, Crack propagation, Texture
National Category
Materials Engineering
Identifiers
urn:nbn:se:kth:diva-352536 (URN)10.1016/j.ijfatigue.2024.108278 (DOI)001290526000001 ()2-s2.0-85188886215 (Scopus ID)
Note

QC 20240903

Available from: 2024-09-03 Created: 2024-09-03 Last updated: 2024-12-23Bibliographically approved

Open Access in DiVA

Effect of microstructure on pre- and post-punching fatigue behavior of hot-rolled thick-plate advanced high-strength steel(177478 kB)12 downloads
File information
File name FULLTEXT01.pdfFile size 177478 kBChecksum SHA-512
460005e8515e7e9857f1bbae51b4fa8109fe5900576d01d3b7aade3d6f1801e0e8aca83cdf6295e6bbe931b578d77753d1845a7332f5a3f58d1cf09cdf2a722e
Type fulltextMimetype application/pdf

Authority records

Heshmati, Nader

Search in DiVA

By author/editor
Heshmati, Nader
By organisation
Hultgren Laboratory for Materials Characterisation
Materials Engineering

Search outside of DiVA

GoogleGoogle Scholar
Total: 12 downloads
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

isbn
urn-nbn

Altmetric score

isbn
urn-nbn
Total: 161 hits
1011121314151613 of 17
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf