kth.sePublications
23456785 of 17
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Laboratory Soft X-Ray Microscopy for Biological Imaging
KTH, School of Engineering Sciences (SCI), Applied Physics, Bio-Opto-Nano Physics. (Biomedical and X-rays Physics)ORCID iD: 0000-0002-0535-3708
2025 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

Soft x-ray microscopy within the water window is a powerful technique for high-resolution biological imaging due to its capability to image whole, intact cells (approximately 10 μm thick) in their near-native cellular environment. The short wavelength of water-window radiation (λ = 2.3 − 4.4 nm, E = 284−540 eV) used in this imaging technique provides high natural contrast for cellular imaging due to the significant difference in soft x-ray attenuation lengths between organic materials, such as proteins and lipids (i.e., carbon), and water (i.e., oxygen). In addition to the high imaging contrast, the high penetration of soft x-rays eliminates the need for laborious sample preparation, including sectioning, chemical fixation, heavy-metal staining, and fluorescence labeling. The majority of soft x-ray microscopes are operated using synchrotron radiation sources, as they require x-ray sources with high spectral brightness, which limits accessibility. To complement these synchrotron-based instruments, we develop a laboratory-based soft x-ray microscope as alternative system for biological imaging. Motivated by this background, this thesis presents the development of laboratory soft x-ray microscopy focused on improving image resolution and optimizing sample preparation. The resolution has been improved to 25 nm(half-period) through vibration analysis and mitigation. Sample preparation optimization was achieved by controlling the ice thickness during devitrification process, applied to both manual plunge-freezing and automated systems, allowing for the preservation of cellular structures and improved image quality. These developments have enabled the establishment of methodology for investigating nanoparticle interactions in-vitro and in-vivo, relying solely on x-ray imaging. These advancements have enabled the investigation of uptake and dynamics of nanoparticles in organelles. Moreover, the applications extend beyond bio-nano interactions; they have also facilitated quantitative studies in viral infections of giant DNA viruses.

Abstract [sv]

Mjukröntgenmikroskopi inom vattenfönstret är en kraftfull teknik för hög-upplöst biologisk avbildning tack vare dess förmåga att avbilda hela, intakta celler (ungefär 10 μm tjocka) i deras nära naturliga cellulära miljö. Den korta våglängden hos strålning i vattenfönstret (λ = 2.3–4.4 nm, E = 284–540 eV) som används i denna avbildningsteknik ger hög naturlig kontrast för cellulär avbildning, tack vare den betydande skillnaden i mjukröntgens absorptionslängd mellan organiska material, såsom proteiner och lipider (dvs. kol), och vatten (dvs. syre). Förutom den höga bildkontrasten eliminerar den höga penetrationen av mjukröntgen behovet av tidskrävande provberedning, inklusive sektionering, kemisk fixering, tungmetallfärgning och fluorescensmärkning. De flesta mjukröntgenmikroskop finns hos synkrotronstrålningskällor eftersom de kräver röntgenkällor med hög spektral ljusstyrka, vilket begränsar tillgängligheten. För att komplettera dessa synkrotronbaserade instrument utvecklar vi ett laboratoriebaserat mjukröntgenmikros-kop som ett alternativt system för biologisk avbildning. Motiverad av denna bakgrund presenterar denna avhandling utvecklingen av laboratoriebaserad mjukröntgenmikroskopi med fokus på att förbät-tra bildupplösningen och optimera provberedningen. Upplösningen har förbättrats till 25 nm (halvperiod) genom vibrationsanalys och dämpning. Optimering av provberedning uppnåddes genom att kontrollera istjockleken under vitrifieringsprocessen, tillämpad både vid manuell snabbfrysning och automatiserade system, vilket möjliggjorde bevarandet av cellstrukturer och förbättrad bildkvalitet. Dessa utvecklingar har möjliggjort etableringen av en metodik för att undersöka nanopartikelinteraktioner in vitro och in vivo, enbart med hjälp av röntgenavbildning. Framstegen har också möjliggjort undersökning av upptag och dynamik av nanopartiklar i organeller. Dessutom sträcker sig tillämpningarna bortom bio-nano-interaktioner; de har också underlättat kvantitativa studier av virusinfektioner med gigantisk DNA-virus.

Place, publisher, year, edition, pages
Stockholm, Sweden: Universitetsservice US-AB , 2025. , p. 45
Series
Laboratory Soft X-Ray Microscopy for Biological Imaging
Keywords [en]
soft x-rays, water window, microscopy, cellular imaging
National Category
Physical Sciences Biological Sciences Biomedical Laboratory Science/Technology
Research subject
Biological Physics
Identifiers
URN: urn:nbn:se:kth:diva-358040ISBN: 978-91-8106-159-8 (print)OAI: oai:DiVA.org:kth-358040DiVA, id: diva2:1924173
Public defence
2025-01-17, Kollegiesalen, Brinellvägen 6, Stockholm, 10:00 (English)
Opponent
Supervisors
Note

QC 2025-01-03

Available from: 2025-01-03 Created: 2025-01-03 Last updated: 2025-01-03Bibliographically approved
List of papers
1. Stability investigation of a cryo soft x-ray microscope by fiber interferometry
Open this publication in new window or tab >>Stability investigation of a cryo soft x-ray microscope by fiber interferometry
2020 (English)In: Review of Scientific Instruments, ISSN 0034-6748, E-ISSN 1089-7623, Vol. 91, no 2, article id 023701Article in journal (Refereed) Published
Abstract [en]

We present a stability investigation of the Stockholm laboratory cryo soft x-ray microscope. The microscope operates at a wavelength of 2.48 nm and can image biological samples at liquid-nitrogen temperatures in order to mitigate radiation damage. We measured the stability of the two most critical components, sample holder and optics holder, in vacuo and at cryo temperatures at both short and long time scales with a fiber interferometer. Results revealed vibrations in the kHz range, originating mainly from a turbo pump, as well as long term drifts in connection with temperature fluctuations. With improvements in the microscope, earlier stability issues vanished and close-to diffraction-limited imaging could be achieved. Moreover, our investigation shows that fiber interferometers are a powerful tool in order to investigate position-sensitive setups at the nanometer level.

Place, publisher, year, edition, pages
American Institute of Physics (AIP), 2020
National Category
Physical Sciences
Identifiers
urn:nbn:se:kth:diva-271501 (URN)10.1063/1.5138369 (DOI)000519231100001 ()32113420 (PubMedID)2-s2.0-85079089509 (Scopus ID)
Note

QC 20200428

Available from: 2020-04-28 Created: 2020-04-28 Last updated: 2025-01-03Bibliographically approved
2. Sample preparation protocol for a laboratory cryo soft x-ray microscopy to study cellular uptake of nanoparticles
Open this publication in new window or tab >>Sample preparation protocol for a laboratory cryo soft x-ray microscopy to study cellular uptake of nanoparticles
(English)In: Article in journal (Refereed) Submitted
National Category
Physical Sciences Biological Sciences
Identifiers
urn:nbn:se:kth:diva-358039 (URN)
Available from: 2025-01-03 Created: 2025-01-03 Last updated: 2025-01-03
3. Laboratory Liquid-Jet X-ray Microscopy and X-ray Fluorescence Imaging for Biomedical Applications
Open this publication in new window or tab >>Laboratory Liquid-Jet X-ray Microscopy and X-ray Fluorescence Imaging for Biomedical Applications
Show others...
2024 (English)In: International Journal of Molecular Sciences, ISSN 1661-6596, E-ISSN 1422-0067, Vol. 25, no 2, article id 920Article in journal (Refereed) Published
Abstract [en]

Diffraction-limited resolution and low penetration depth are fundamental constraints in optical microscopy and in vivo imaging. Recently, liquid-jet X-ray technology has enabled the generation of X-rays with high-power intensities in laboratory settings. By allowing the observation of cellular processes in their natural state, liquid-jet soft X-ray microscopy (SXM) can provide morphological information on living cells without staining. Furthermore, X-ray fluorescence imaging (XFI) permits the tracking of contrast agents in vivo with high elemental specificity, going beyond attenuation contrast. In this study, we established a methodology to investigate nanoparticle (NP) interactions in vitro and in vivo, solely based on X-ray imaging. We employed soft (0.5 keV) and hard (24 keV) X-rays for cellular studies and preclinical evaluations, respectively. Our results demonstrated the possibility of localizing NPs in the intracellular environment via SXM and evaluating their biodistribution with in vivo multiplexed XFI. We envisage that laboratory liquid-jet X-ray technology will significantly contribute to advancing our understanding of biological systems in the field of nanomedical research.

Place, publisher, year, edition, pages
MDPI AG, 2024
Keywords
bioimaging, cell imaging, liquid-jet X-ray source, multiplexed imaging, nanomedicine, stain-free imaging, X-ray fluorescence imaging, X-ray microscopy
National Category
Radiology, Nuclear Medicine and Medical Imaging
Identifiers
urn:nbn:se:kth:diva-343205 (URN)10.3390/ijms25020920 (DOI)001151313100001 ()38255992 (PubMedID)2-s2.0-85183335794 (Scopus ID)
Note

QC 20240209

Available from: 2024-02-08 Created: 2024-02-08 Last updated: 2025-01-03Bibliographically approved
4. Nanoparticle dynamics in macrophages investigated with a laboratory soft x-ray microscope
Open this publication in new window or tab >>Nanoparticle dynamics in macrophages investigated with a laboratory soft x-ray microscope
Show others...
(English)In: Article in journal (Other academic) Submitted
National Category
Cell Biology
Research subject
Biological Physics
Identifiers
urn:nbn:se:kth:diva-358038 (URN)
Note

QC 20250107

Available from: 2025-01-03 Created: 2025-01-03 Last updated: 2025-01-07Bibliographically approved
5. Quantitative conversion of biomass in giant DNA virus infection
Open this publication in new window or tab >>Quantitative conversion of biomass in giant DNA virus infection
Show others...
2021 (English)In: Scientific Reports, E-ISSN 2045-2322, Vol. 11, no 1, article id 5025Article in journal (Refereed) Published
Abstract [en]

Bioconversion of organic materials is the foundation of many applications in chemical engineering, microbiology and biochemistry. Herein, we introduce a new methodology to quantitatively determine conversion of biomass in viral infections while simultaneously imaging morphological changes of the host cell. As proof of concept, the viral replication of an unidentified giant DNA virus and the cellular response of an amoebal host are studied using soft X-ray microscopy, titration dilution measurements and thermal gravimetric analysis. We find that virions produced inside the cell are visible from 18 h post infection and their numbers increase gradually to a burst size of 280-660 virions. Due to the large size of the virion and its strong X-ray absorption contrast, we estimate that the burst size corresponds to a conversion of 6-12% of carbonaceous biomass from amoebal host to virus. The occurrence of virion production correlates with the appearance of a possible viral factory and morphological changes in the phagosomes and contractile vacuole complex of the amoeba, whereas the nucleus and nucleolus appear unaffected throughout most of the replication cycle.

Place, publisher, year, edition, pages
Springer Nature, 2021
National Category
Basic Medicine
Identifiers
urn:nbn:se:kth:diva-293139 (URN)10.1038/s41598-021-83547-9 (DOI)000626138700020 ()33658544 (PubMedID)2-s2.0-85102010812 (Scopus ID)
Note

QC 20210421

Available from: 2021-04-21 Created: 2021-04-21 Last updated: 2025-01-03Bibliographically approved

Open Access in DiVA

fulltext(7567 kB)41 downloads
File information
File name FULLTEXT01.pdfFile size 7567 kBChecksum SHA-512
61791e1e8e539a248bdfdef0ec49c7c292d98c60de613b0c5a30040887dad8ac11815d70023babe02fa3b79915ccc182f75ec83f8fd528b748f62074b756070e
Type fulltextMimetype application/pdf

Other links

http://urn:nbn:se:kth:diva-358040

Authority records

Arsana, Komang

Search in DiVA

By author/editor
Arsana, Komang
By organisation
Bio-Opto-Nano Physics
Physical SciencesBiological SciencesBiomedical Laboratory Science/Technology

Search outside of DiVA

GoogleGoogle Scholar
Total: 41 downloads
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

isbn
urn-nbn

Altmetric score

isbn
urn-nbn
Total: 294 hits
23456785 of 17
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf