Open this publication in new window or tab >>2025 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]
The rapid integration of renewable energy sources is transforming traditional power systems into converter-dominated networks, characterized by low inertia and complex dynamic behaviors. This shift introduces fundamental challenges to stable system operation, particularly the risk of low-frequency oscillations, where synchronization, power, and voltage-control dynamics exhibit complex couplings. To this end, the thesis investigates low-frequency oscillation risks from three interconnected dimensions: converter-level control design, decentralized stability assessment, and system-level coordination in multi-converter environments.
The first part of the thesis focuses on control design for grid-connected voltage source converters (VSCs). Starting with grid-following (GFL) converters, which traditionally rely on strong grid conditions for stable operation, the work identifies root causes of instability through block diagram modeling. An active damping control strategy (Q-VID) is proposed, enabling stable operation with a 400-Hz phase-locked loop (PLL) bandwidth even under ultra-weak grids with a short-circuit ratio (SCR) of 1.28. Building on this, a grid-forming (GFM) control scheme is developed using a PLL-synchronized architecture. This approach retains the simplicity and implementation compatibility of conventional GFL methods while providing voltage and frequency support with robust performance under both strong and weak grid conditions.
Effective control design is closely tied to stability assessment methods, which provide essential theoretical support and stability specifications. Moreover, these assessment methods assist in risk localization, elimination, product specification determination, and adherence to grid codes. Hence the second part addresses the need for decentralized stability assessment methods, which become increasingly important in converter-rich power systems. While passivity theory serves as a fundamental tool, its application in the low-frequency range is limited. To overcome these limitations, the thesis introduces a rotated passivity index by integrating passivity and multiplier theory. This extended formulation enables full-frequency-range stability assessment.
The third part of the thesis extends the proposed control and stability analysis framework to multi-converter systems. It begins by modeling the parallel operation of multiple converters. Building on this foundation, the previously developed control strategies and stability assessment methods are integrated into a unified framework that enables risk assessment, instability source identification, and mitigation across multi-converter environments.
In summary, this doctoral research ensures the stable operation of converter-dominated power systems by contributing across three levels: control design (GFL and GFM), theoretical tools for decentralized stability assessment, and system-level coordination in multi-converter networks. All proposed methods are validated through both simulation and experimental results. Together, these contributions form a coherent and practical methodology for next-generation grid integration.
Abstract [sv]
Den snabba integreringen av förnybara energikällor omvandlar traditionella kraftsystem till omriktardominerade nät som kännetecknas av låg tröghet och komplexa dynamiska egenskaper. Denna förändring medför grundläggande utmaningar för en stabil drift, särskilt risken för lågfrekventa svängningar där synkroniserings-, effekt- och spänningsregleringar är starkt kopplade. Avhandlingen angriper dessa lågfrekventa stabilitetsproblem ur tre sammanhängande perspektiv: regleringsdesign på omriktarnivå, decentraliserad stabilitetsbedömning och systemsamordning i miljöer med flera omriktare.
Den första delen behandlar regleringsdesign för nätanslutna spänningskällsomriktare (VSC). Arbetet inleds med grid-following-omriktare (GFL), som traditionellt förutsätter en stark nätimpedans för stabil drift. Med hjälp av blockdiagrammodellering identifieras grundorsaker till instabilitet, varefter en aktiv dämpningsstrategi (Q-VID) föreslås. Den möjliggör stabil funktion med 400 Hz PLL-bandbredd även vid mycket svaga nät med en kortslutningskvot (SCR) på 1,28. Därefter utvecklas ett grid-forming-schema (GFM) baserat på en PLL-synkroniserad arkitektur. Lösningen behåller GFL-metodens enkelhet och kompatibilitet samtidigt som den ger spännings- och frekvensstöd med god prestanda i både starka och svaga nät.
Effektiv regleringsdesign kräver tillförlitliga stabilitetsbedömningsmetoder som ger teoretiskt underlag och specificerar stabilitetskrav. Sådana metoder stöder dessutom risklokalisering, åtgärder, produktspecifikationer och uppfyllnad av nätkoder. Därför utvecklas i den andra delen ett roterat passivitetsindex som kombinerar passivitets- och multiplikatorteori, vilket möjliggör decentraliserad stabilitetsanalys över hela det relevanta frekvensområdet.
I den tredje delen utvidgas den föreslagna reglerings- och stabilitetsramen till system med flera omriktare. En impedansbaserad modell av parallellkopplade omriktare ligger till grund för ett enhetligt ramverk som möjliggör riskbedömning, identifiering av instabilitetskällor och åtgärder utan global systeminformation eller deltagarfaktoranalyser.
Sammanfattningsvis säkerställer denna doktorsavhandling stabil drift i omriktardominerade kraftsystem genom bidrag på tre nivåer: regleringsdesign för GFL- och GFM-omriktare, teoretiska verktyg för decentraliserad stabilitetsbedömning samt systemsamordning i nät med flera omriktare. Samtliga föreslagna metoder har verifierats genom både simuleringar och laboratorieexperiment och utgör tillsammans en sammanhållen och praktiskt användbar metodik för nästa generations nätintegration.
Place, publisher, year, edition, pages
Stockholm: KTH Royal Institute of Technology, 2025. p. xiii, 75
Series
TRITA-EECS-AVL ; 2025:73
Keywords
Power Electronics, Grid-Following Control, Grid-Forming Control, Active Damping, Decentralized Stability Assessment, Passivity Theory, Multiplier Theory, Effekt-elektronik, Grid-Following-kontroll, Grid-Forming-kontroll, Aktiv dämpning, Decentraliserad stabilitetsbedömning, Passivitetsteori, Multiplikatorteori
National Category
Power Systems and Components
Research subject
Electrical Engineering
Identifiers
urn:nbn:se:kth:diva-368380 (URN)978-91-8106-339-4 (ISBN)
Public defence
2025-09-12, Kollegiesalen, Brinellvägen 6, KTH Campus, Stockholm, 09:00 (English)
Opponent
Supervisors
Note
QC 20250815
2025-08-152025-08-142025-08-26Bibliographically approved