Open this publication in new window or tab >>2025 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]
An effective municipal street network is essential for regional development, supporting mobility and public utilities, and requires optimal maintenance strategies for efficient use of public funds. This research, focused on northern Sweden, aims to enhance municipal street maintenance by integrating sustainability frameworks, current practices, and pavement performance modelling through five complementary studies.
The Sustainability National Road Administrations (SUNRA) framework was adapted for both Swedish Transport Administration (STA) road projects and municipal street maintenance. Findings show it can be effectively applied during planning for investment, maintenance, and construction or reconstruction projects.
Insights from a survey of Swedish municipalities highlighted pavement maintenance practices and challenges. Common pavement distresses included potholes, uneven surfaces, and alligator cracking. These were mainly caused by pavement ageing, heavy traffic, and patching. Cold climate and population density were additional factors. Automated pavement data collection, commercial pavement management systems (PMS), and performance models were rarely used. The windshield method, however, remained common. Northern and densely populated municipalities allocated higher budgets to pavement maintenance and rehabilitation.
Two machine learning (ML) studies and one sigmoid deterioration modelling study predicted the pavement condition index (PCI) over time using manually collected data from Skellefteå Municipality (2014, 2018, 2022). Both ML studies tested linear regression (LR), random forest (RF), and neural network (NN) algorithms, with RF achieving the highest prediction accuracy. Pavement age was the most important variable in the first study. The second study, using extended datasets with maintenance treatment categories, slightly improved predictions. Key variables for predicting the 2022 PCI included previous status (2018) and weighted distress.
Sigmoid deterioration curves captured non-residential street deterioration effectively but were less accurate for residential streets, probably due to variable pavement age and frequent utility cuts. Similarly, curves for pavements treated with surface levelling (SL) and special treatments (ST) performed best, while milling and resurfacing (MR) provided a balanced cost-performance outcome.
These findings support data-driven decision-making and optimized municipal street maintenance. Further evaluation using data from multiple municipalities, including automated collection methods and climate factors, is recommended.
Abstract [sv]
Ett välfungerande kommunalt gatunät är en grundförutsättning för regional utveckling, då det möjliggör både mobilitet och tillgång till kommunal infrastruktur och samhällstjänster. För att uppnå detta på ett effektivt sätt behöver man införa optimala underhållsstrategier som medför att man använder tillgänglig budget på ett effektivt sätt. Avhandlingen undersöker hur kommuner i Sverige underhåller och sköter sina gator och hur detta kan förbättras. Studien har inventerat tillämpningen av hållbarhetsprinciper, nuvarande metoder för underhåll och förvaltning av gatunätet samt modeller för att förutsäga gatans skick. Forskningen består av fem delstudier, där varje studie tillför separata insikter.
Sustainability National Road Administrations (SUNRA) – hållbarhetsbedömningsverktyget – anpassades för både Trafikverkets vägprojekt och kommunalt gatunderhåll. Resultaten visar att verktyget enkelt kan användas och anpassas under planeringen av investeringar, underhåll samt nybyggnation eller ombyggnation av gator.
Som en del av studien skickades en enkät till samtliga 290 svenska kommuner för att samla information om arbetssätt och utmaningar inom kommunalt gatuunderhåll. Resultaten visar att de vanligaste gatubeläggningsskadorna inkluderade potthål, ojämnheter och krackelering där den vanligaste orsaken är åldrande beläggning, tung trafik och asfaltlappning (dvs. reparation av enskilda skador). Kallt klimat och hög befolkningstäthet är också betydande faktorer som bidrar till beläggningens nedbrytning av gatunätet. Användning av objektiva automatiska metoder för insamling av gatubeläggningars tillstånd med vägytemätningsfordon samt kommersiella PMS (vägförvaltningssystem) är mycket begränsad. Istället används främst subjektiva okulära besiktningsmetoder vid bedömningen av gatunätets tillstånd bland de kommuner som använder PMS. Budgettilldelningen för underhåll och ombyggnad av gatunätet är högre i de norra regionerna i landet samt i tätbefolkade kommuner.
Två maskininlärningsstudier (ML) samt en studie med sigmoid nedbrytningsmodellering har utförts för att förutsäga beläggningstillståndsindex (PCI) över tid. Studierna baserades på subjektiv data okulärt insamlade om beläggningstillståndet av gatunätet (2014, 2018 och 2022) från Skellefteå kommun. Båda ML-studierna testade linjär regression (LR), random forest (RF) och neurala nätverk (NN) algoritmer, där RF konsekvent gav bäst resultat. Beläggningens ålder var den viktigaste variabeln i den första studien. I den fördjupade studien presterades modeller med utökade variabler avsevärt bättre än de som endast använde ålder. De viktigaste förklarande variablerna för att förutsäga PCI 2022 var status värdet innan samt de viktade skadetalen.
Sigmoiddeterioreringskurvor fångade effektivt nedbrytningen av icke-bostadsgator, men var mindre exakta för bostadsgator, sannolikt på grund av varierande beläggningsålder och frekventa ledningsgrävningar. Kurvor för beläggningar behandlade med ytjämning (SL) och specialbehandlingar (ST) gav bäst resultat, medan fräsning och nybeläggning (MR) gav en balanserad kostnad-prestanda-effekt.
Studien stödjer datadrivet beslutsfattande och optimerat kommunalt gatubeläggningsunderhåll. Modellerna rekommenderas att vidareutvärderas med data från flera kommuner, inklusive automatiserade datainsamlingsmetoder och klimatfaktorer.
Place, publisher, year, edition, pages
Stockholm: KTH Royal Institute of Technology, 2025. p. 107
Series
TRITA-ABE-DLT ; 2529
Series
ISBN ; 978-91-8106-401-8
Keywords
Municipalities, maintenance, street network, cold climate, pavement management systems, pavement condition index, prediction models, machine learning, random forest, neural network, linear regression, sigmoid model, Kommuner, underhåll, gatunät, kallt klimat, vägförvaltningssystem, beläggningstillståndsindex, nedbrytningsmodeller, maskininlärning, random forest, neuralt nätverk, linjär regression, sigmoidmodell
National Category
Infrastructure Engineering
Research subject
Civil and Architectural Engineering, Building Materials
Identifiers
urn:nbn:se:kth:diva-372081 (URN)
Public defence
2025-11-21, Kollegiesalen, Brinellvägen 8, KTH Campus, public video conference link https://kth-se.zoom.us/j/67258935998, Stockholm, 13:00 (English)
Opponent
Supervisors
Note
Research funders:
Skellefteå municipality
Mistra InfraMaint Project 1.8 (DIA 2016/28)
QC 20251029
2025-10-292025-10-292025-10-29Bibliographically approved