kth.sePublications
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Single-Photon LIDAR Exploiting Pulsed, Continuous, and Chaotic Illumination
KTH, School of Engineering Sciences (SCI), Applied Physics, Quantum and Nanostructure Physics. KTH. (QNP)ORCID iD: 0000-0003-0937-3527
2025 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

Light Detection and Ranging (LIDAR) is a key enabling technology in our modern society, with widespread applications across multiple industries ranging from heavy industry such as manufacturing and mining to telecommunication and autonomous vehicles. LIDAR has also developed into a critical and widespread tool for scientific research, impacting a broad range of fields such as archaeology and atmospheric sensing, to name but two.At its core, LIDAR consists of three fundamental components: a source, an optical system, and a detector. The source generates the optical probe signal, the optical system directs the probe toward the target and collects the returned signal, and the detector records the reflected signal for further analysis to determine the target’s distance (and other variables such as velocity or reflectivity may be extracted depending on the LIDAR system). This dissertation primarily focuses on the source and detector, exploring different methodologies and applications of LIDAR, particularly in the context of single-photon detectors.

This thesis begins with an overview of the historical development of LIDAR and its natural progression towards incorporating single-photon-sensitive detectors to enhance performance. The operating principles of the most commonly used single-photon detectors are examined and compared, with a detailed discussion on how their performance characteristics and practical constraints influence LIDAR system functionality and design.

Following this, three fundamentally different types of light sources used for different LIDAR methods—pulsed, continuous, and chaotic—are explored. The operating principles of each method are detailed, including how distance information is encoded within each type of probe and the corresponding analysis required for its extraction. Additionally, the advantages and limitations of these LIDAR methods are discussed.

Abstract [sv]

Light Detection and Ranging (LIDAR) är en kritisk teknologi i vårt moderna sammhälle med multipla applikationer inom många branscher. Alltifrån tunga industrier som tillverkning och gruvdrift till telekommunikation och autonoma fordon förlitar sig på LIDAR. Utöver detta har LIDAR utvecklats till ett kritiskt vetenskapligt verktyg som har haft stor påverkan inom bland annat arkeologi och atmosfäriska mätningar.

I grunden består LIDAR av tre grundläggande komponenter: en ljuskälla,ett optiskt system, och en detektor. Källan genererar den optiska sonderingssignalen, det optiska systemet riktar sonden mot målet och samlar in den återkommande signalen, och detektorn registrerar den återkommande signalen för vidare analys för att bestämma avståndet till målet (andra variabler så som hastighet och reflektivitet kan också utvinnas beroende på LIDAR systemet). Denna avhandling fokuserar främst på källan och detektorerna och uforskar olika metodologier och applikationer av LIDAR, i synnerhet i sammanhanget av enkel-foton detektorer.

Denna avhandling inleds med en översikt av LIDAR:s historiska utveckling och dess naturliga utveckling mot att inkludera en-foton-känsliga detektorer för att förbättra prestanda. De underliggade principerna för de mest vanliga enkel-foton detektorerna undersöks och jämförs med en detaljerad disskusionom hur deras prestanda och praktiska begränsningar påverkar LIDARsystemets funktionalitet och design.

Följande detta utforskar vi tre fundamentalt annorlunda typer av ljuskällor som används för LIDAR – pulsade, kontinuerliga, och kaotiska. Driftprincipernaför de olika LIDAR metoderna beskrivs, inklusive hur avståndsinformation är kodad i varje typ av sond samt motsvarande analys som krävs för dess extraktion. Utöver detta diskuteras även LIDAR-metodernas styrkor och begränsningar.

Place, publisher, year, edition, pages
Stockholm: Kungliga Tekniska högskolan, 2025. , p. 70
Series
TRITA-SCI-FOU ; 2025:09
Keywords [en]
LIDAR, time of flight, ToF, frequency modulated continuous wave, FMCW, single-photon detectors, SNSPDs, bunched sources
National Category
Other Physics Topics
Research subject
Physics, Optics and Photonics
Identifiers
URN: urn:nbn:se:kth:diva-363083ISBN: 978-91-8106-212-0 (print)OAI: oai:DiVA.org:kth-363083DiVA, id: diva2:1956420
Public defence
2025-06-05, Q2, Malvinas väg 10, Stockholm, 10:00 (English)
Opponent
Supervisors
Note

QC 2025-05-06

Available from: 2025-05-06 Created: 2025-05-06 Last updated: 2025-05-09Bibliographically approved
List of papers
1. Frequency modulated continuous wave and time of flight LIDAR with single photons: a comparison
Open this publication in new window or tab >>Frequency modulated continuous wave and time of flight LIDAR with single photons: a comparison
2024 (English)In: Optics Express, E-ISSN 1094-4087, Vol. 32, no 5, p. 7332-7341Article in journal (Refereed) Published
Abstract [en]

In this study, we compare the two prominent Light Detection and Ranging (LIDAR) technologies: Frequency Modulated Continuous Wave (FMCW) and Time of Flight (ToF). By constructing a setup capable of performing both LIDAR methods at the single photon level using a Superconducting Nanowire Single Photon Detector (SNSPD), we compare the accuracy and investigate the dependence of the resulting images and accuracy on the signal power and the corresponding signal to noise ratio. We demonstrate that both LIDAR methods are able to reconstruct 3D environments with a signal-to-noise ratio as low as 0.03. However, the accuracy of FMCW LIDAR is shown to degrade in the low photon regime, while ToF LIDAR accuracy is shown to be stable across the same range. Lastly, we use a median de-noising convolution filter to effectively combat the typical "salt and pepper" noise found in LIDAR images, further enhancing the performance of both methods.

Place, publisher, year, edition, pages
Optica Publishing Group, 2024
National Category
Atom and Molecular Physics and Optics
Identifiers
urn:nbn:se:kth:diva-344343 (URN)10.1364/OE.508004 (DOI)001202192800001 ()38439416 (PubMedID)2-s2.0-85186475330 (Scopus ID)
Note

QC 20240314

Available from: 2024-03-13 Created: 2024-03-13 Last updated: 2025-05-06Bibliographically approved
2. Temperature measurements in deployed optical fiber networks using single photon optical time domain reflectometry
Open this publication in new window or tab >>Temperature measurements in deployed optical fiber networks using single photon optical time domain reflectometry
2023 (English)In: Optics Express, E-ISSN 1094-4087, Vol. 31, no 5, p. 8170-8176Article in journal (Refereed) Published
Abstract [en]

We demonstrate an approach to measure average temperature changes in deployed optical fiber networks using Optical Time Domain Reflectometry, OTDR, at the single photon level. In this article we derive a model relating the change in temperature of an optical fiber to the change in time of flight of reflected photons in the fiber in the range -50 -> 400 degrees C. A setup is constructed to validate this model utilizing a pulsed 1550 nm laser and a Superconducing Nanowire Single Photon Detector, SNSPD. With this setup we show that we can measure temperature changes with 0.08 degrees C accuracy over km distances and we demonstrate temperature measurements in a dark optical fiber network deployed across the Stockholm metropolitan area. This approach will enable in-situ characterization for both quantum and classical optical fiber networks.

Place, publisher, year, edition, pages
Optica Publishing Group, 2023
National Category
Atom and Molecular Physics and Optics
Identifiers
urn:nbn:se:kth:diva-325220 (URN)10.1364/OE.483404 (DOI)000944827800007 ()36859933 (PubMedID)2-s2.0-85149111302 (Scopus ID)
Note

QC 20230403

Available from: 2023-04-03 Created: 2023-04-03 Last updated: 2025-05-06Bibliographically approved
3. Measuring vibrations using Doppler shifted frequency modulated continuous-wave LIDAR with single photons
Open this publication in new window or tab >>Measuring vibrations using Doppler shifted frequency modulated continuous-wave LIDAR with single photons
2025 (English)In: Optics Letters, ISSN 0146-9592, E-ISSN 1539-4794, Vol. 50, no 2, p. 523-526Article in journal (Refereed) Published
Abstract [en]

We demonstrate a frequency modulated continuous-wave (FMCW) light detection and ranging (LIDAR) system utilizing a superconducting nanowire single-photon detector (SNSPD) to measure vibrational spectra using reflected signals at the single-photon level. By determining the time-variant Doppler shift of the reflected probe signal, this system successfully reconstructs various audio signals, including pure sinusoidal, multi-tonal, and musical signals, up to 200 Hz, limited by the laser frequency modulation rate and the Nyquist sampling theorem. Additionally, we employ scanning galvo mirrors to perform 3D measurements and map audio signals from different regions in the scanned field of view. The integration of an SNSPD provides significant advantages such as near-unity detection efficiency, low dark count rates, and picosecond timing jitter, enabling measurements of vibrational spectra with as few as 100 detected reflected photons per laser sweep.

Place, publisher, year, edition, pages
Optica Publishing Group, 2025
National Category
Atom and Molecular Physics and Optics
Identifiers
urn:nbn:se:kth:diva-359281 (URN)10.1364/OL.544481 (DOI)39815552 (PubMedID)2-s2.0-85215756753 (Scopus ID)
Note

QC 20250203

Available from: 2025-01-29 Created: 2025-01-29 Last updated: 2025-05-06Bibliographically approved

Open Access in DiVA

fulltext(29137 kB)53 downloads
File information
File name FULLTEXT01.pdfFile size 29137 kBChecksum SHA-512
8a7fcd3350f04d41a9fc216f7376e43e62949a986d11678e0804321d0316124256d9e7cf9b94a9030e1b3b26c50f0270d2f75e92d01330159bb266f74e0eccee
Type fulltextMimetype application/pdf

Search in DiVA

By author/editor
Staffas, Theodor
By organisation
Quantum and Nanostructure Physics
Other Physics Topics

Search outside of DiVA

GoogleGoogle Scholar
Total: 55 downloads
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

isbn
urn-nbn

Altmetric score

isbn
urn-nbn
Total: 280 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf