kth.sePublications
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Modeling the stress-strain response and microstructure development of porous sintered steels
KTH, School of Engineering Sciences (SCI), Engineering Mechanics.ORCID iD: 0000-0002-5865-7465
2025 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

The work in this thesis deals with developing a modeling framework for the prediction of stress-strain behavior and microstructural changes in sintered metals containing porosity. Sintered steels are used in certain structural applications, for example, in the automotive industry. Mechanical behavior then becomes of importance, where compact density plays a major role in controlling properties. In addition, microscale features related to the shape and size of the pores also affect the stress-strain response. These features are, in turn, influenced by the sintering cycle. Thus, a mean-field diffusion-based sinteringmodel is employed together with a representative volume element (RVE)micromechanical model in an attempt to predict experimentally measured properties of a bainitic sintered steel.

Paper A presents a detailed characterization of uniaxial tensile and compressive behavior, based on compact density. Micro and macro hardness testing is carried out and compared with tensile results. Tests on samples of the same green density, subjected to different hold times and temperatures during the sinter cycle, are also performed. Effects of carbon content, pore structure and density on tensile behavior are discussed.

The sintering model is described and presented in Paper B. A new computational framework is introduced for the “two-particle” model, incorporating five different transport mechanisms. Density-dependence is introduced by relating particle overlap to the solid volume in a close-packed structure. Predicted microscopic shrinkage is compared to experimentally measured dimensional change of sintered tensile specimens for two different sinter cycles. A parametric study investigates the influence of different transportIImechanisms and particle size. The quality of fit for the model and reasons for experimentally observed differences between two cycles are discussed.

Micromechanical modeling is addressed in Papers C and D. In Paper C, the RVE is introduced in the form of close-packed overlapping spherical particles. Detailed motivation is given for how the model relates to compact density,microstructural features of the pores and particle size. Matrix parameters are reported, obtained by fitting the experimental tensile curve at one density using small-strain theory and von Mises plasticity. Results are then presented for simulations at five densities, where good agreement is shown between simulated and experimental curves. Lastly, a parametric study investigating the effects of sinter neck curvature is presented.

In Paper D, the RVE is augmented with the introduction of cohesive zones between particles to account for fracture behavior. Cohesive parameters are identified for a bi-linear traction-separation law that give good qualitative agreement between experimental and model results. The effect of varying the number of cohesive zones on the fracture response is investigated. Discussion focuses on further improvements to the model based on in-situ microstructural observations found in literature. In the introduction and conclusion section of the thesis, the proposed framework is discussed in the context of the integrated computational materialsengineering (ICME) approach and state of the art in sintering and porosity modeling. Avenues for further development to improve the predictive ability or extend the utility of the model are suggested in the outlook.

Abstract [sv]

Denna avhandling behandlar utveckling av beräkningsmetoder för att förutsäga spännings-töjningsbeteende och mikrostrukturella förändringar i sintrade metaller som innehåller porer. Sintrade stål används i många strukturellatillämpningar, till exempel inom fordonsindustrin. Mekaniska egenskaper blir då av betydelse och densitet spelar en stor roll för att kontrollera dessa egenskaper. De mikroskaliga effekterna, så som storleken och formen på porerna påverkar även spänning-töjningsbeteendet. Dessa egenskaper påverkas i sin tur av sintringscykeln. Således används här en diffusionsmodell baserad på medelfältsteori tillsammans med en mikromekanisk modell med representativ volymelement (RVE) i ett försök att förutsäga experimentellt uppmätta egenskaper hos ett bainitiskt sintrat stål.

Artikel A presenterar en detaljerad karakterisering av enaxligt drag- och kompressionsbeteende, baserat på densitet. Mikro- och makrohårdhetstestning utförs och jämförs med dragprovsresultat. Tester på prover med samma densitet före sintring, utsatta för olika hålltider och temperaturer under sintringscykeln, genomförs också. Effekter av kolhalt, porstruktur och densitet på beteendet vid dragbelastning diskuteras.

Sintringsmodellen beskrivs och presenteras i Artikel B. En ny beräkningsmetod introduceras för "tvåpartikelmodellen", som innefattar fem olika transportmekanismer. Densitetsberoende introduceras genom att relatera partikelöverlappning till volymen i en tätpackad struktur. Simuleradmikroskopisk krympning jämförs med experimentellt uppmätt dimensionsförändring av sintrade dragprover för två olika sintringscykler.      Därefter genomfördes en parametrisk studie av effekten av olikaIVtransportmekanismer och partikelstorlek. Noggrannheten hos de numeriska resultaten och orsakerna till experimentellt observerade skillnader mellan två cykler diskuteras också.

Mikromekanisk modellering tas upp i Artiklar C och D. I Artikel C introducerasen RVE-modell i form av tätt packade överlappande sfäriska partiklar. Endetaljerad motivering ges för hur modellen beskriver densitet ochmikrostrukturella egenskaper hos porerna och partikelstorlek. Konstitutivaparametrar beräknas genom att anpassa den experimentella dragprovkurvanvid en densitet med antagandet om små deformationer och von Mises plasticitet. Med den mikromekaniska modellen beräknades spänning-töjningskurvor vidfem olika densiteten och jämfördes med de experimentella resultaten. God överenstämmelse erhölls. Slutligen presenteras en parametrerstudie som undersökte effekterna av sinterhalsens krökning.

I Artikel D utökas RVE-modellen med införandet av kohesiva zoner mellanpartiklar för att beskriva sprickbeteendet mellan partiklar. Kohesiva parametrar identifieras för en bilinjär kohesiv modell som ger god kvalitativöverensstämmelse med experimentella resultat. Effekten av olika antalsammanhängande zoner undersöks. Därefter diskuteras framtida förbättringarav den kohesiva modellen baserat på observationer av mikrostrukturellsprickutveckling presenterat tidigare i andra studier.I avhandlingens introduktions- och slutsatsavsnitt diskuteras hur denframtagna beräkningsmetoden passar in i ICME-metoden och senaste rön inomsinter- och porositetsmodellering. I avsnittet om möjliga framtida studierföreslås möjligheter för att förbättra prediktionsförmågan och utökaanvändbarheten av modellen.

Place, publisher, year, edition, pages
Stockholm: KTH Royal Institute of Technology, 2025. , p. xii, 33
Series
TRITA-SCI-FOU ; 2025:19
Keywords [en]
Powder metallurgy, sintering model, micromechanics, RVE analysis, cohesive zone modeling
Keywords [sv]
Pulvermetallurgi, sintringsmodell, mikromekanik, RVE-analys, kohesiv zon modellering
National Category
Solid and Structural Mechanics
Research subject
Solid Mechanics
Identifiers
URN: urn:nbn:se:kth:diva-363171ISBN: 978-91-8106-245-8 (print)OAI: oai:DiVA.org:kth-363171DiVA, id: diva2:1956664
Public defence
2025-05-21, F3, Lindstedtsvägen 26, Stockholm, 13:00 (English)
Opponent
Supervisors
Note

QC250507

Available from: 2025-05-07 Created: 2025-05-06 Last updated: 2025-05-07Bibliographically approved
List of papers
1. On the mechanical behavior of sintered Astaloy-85Mo: Influence of porosity and sinter conditions
Open this publication in new window or tab >>On the mechanical behavior of sintered Astaloy-85Mo: Influence of porosity and sinter conditions
Show others...
2022 (English)In: Materials Science & Engineering: A, ISSN 0921-5093, E-ISSN 1873-4936, Vol. 841, p. 143052-143052, article id 143052Article in journal (Refereed) Published
Abstract [en]

Astaloy™ 85 Mo is a pre-alloyed, water-atomized 0.85% Mo steel powder. The aim of the present investigation is to study the influence of porosity, controlled by both mechanical and thermal processing, on the mechanical properties in a bainitic microstructure of a pressed and sintered steel. To achieve this, uniaxial tensile and compression testing is performed, together with Vickers macro- and microhardness experiments. Microhardness testing is carried out in order to determine the behavior of the matrix material at a scale where porosity influence is minimized. Both the influence from size and shape of the pores is investigated and compared with relevant mechanical analyses for porous solids. Such mechanical analyses are pertinent to both elastic and plastic properties, where in the latter case the well-known Gurson-Tvergaard model for solids with spherical pores is relied upon. It is shown that assuming a spherical pore shape is not sufficient in order to achieve good agreement between predictions and experimental results and will be further investigated in future studies.

Place, publisher, year, edition, pages
Elsevier BV, 2022
National Category
Applied Mechanics Metallurgy and Metallic Materials
Research subject
Solid Mechanics
Identifiers
urn:nbn:se:kth:diva-312110 (URN)10.1016/j.msea.2022.143052 (DOI)000821764500002 ()2-s2.0-85127612262 (Scopus ID)
Note

QC 20220728

Available from: 2022-05-11 Created: 2022-05-11 Last updated: 2025-05-06Bibliographically approved
2. Modeling neck evolution and shrinkage during sintering of Astaloy® 85 Mo
Open this publication in new window or tab >>Modeling neck evolution and shrinkage during sintering of Astaloy® 85 Mo
Show others...
2024 (English)In: Computational Particle Mechanics, ISSN 2196-4378Article in journal (Refereed) Epub ahead of print
Abstract [en]

Porosity and interparticle neck size are microstructural parameters that play an important role for pressed and sintered materials. To understand the effect of sintering parameters such as time and temperature on the microstructure of a pre-alloyed sintered steel (Astaloy® 85 Mo), a mean-field modeling approach tracking the neck size and geometry evolution during sintering is developed in combination with experimental studies. Building upon a mathematical framework describing the geometrical changes in a presently developed two-particle model, due to the diffusion mechanisms active during solid-state sintering, the influence of sintering conditions and of the initial microstructure on various aspects of the geometry is investigated. In addition, the predicted effects of each diffusion mechanism on different geometrical parameters are presented. To calibrate the model, the green-to-sintered dimensional change as well as experimentally observed microstructures of Astaloy® 85 Mo are also studied.

Place, publisher, year, edition, pages
Springer Nature, 2024
Keywords
Modeling/simulations, Sintering, Powder processing, Iron alloys, Micromechanics
National Category
Applied Mechanics
Identifiers
urn:nbn:se:kth:diva-363174 (URN)10.1007/s40571-024-00884-y (DOI)001379371800001 ()2-s2.0-85212278378 (Scopus ID)
Note

QC 20250507

Available from: 2025-05-06 Created: 2025-05-06 Last updated: 2025-05-07Bibliographically approved
3. Micromechanical prediction of the elastic and plastic properties of sintered steels
Open this publication in new window or tab >>Micromechanical prediction of the elastic and plastic properties of sintered steels
Show others...
2024 (English)In: Materials Science & Engineering: A, ISSN 0921-5093, E-ISSN 1873-4936, Vol. 897, article id 146324Article in journal (Refereed) Published
Abstract [en]

One of the characteristic features of sintered steels is the porosity in their microstructure resulting from the compaction and sintering process. This porosity strongly influences the mechanical properties. To enhance the understanding for the structure–property relationship of sintered Astaloy®85Mo with 0.4 wt.%C, a micromechanical modelling approach based on face-centred cubic (fcc) representative volume elements (RVE) is proposed. The fcc-like periodic arrangement of the sintered particles in the RVE enables the consideration of a realistic non-spherical pore morphology. To compare the predictions with experimental results, accompanying uniaxial tensile tests are considered at different pore volume fractions after initial microstructure characterisation. In addition to the effect of pore volume fraction, the influence of sinter necks on the predicted overall strength is also systematically investigated. Despite the fairly simple nature of the underlying fcc structure, the RVE simulations are perfectly capable of reproducing the experimental trend, showing that the elasto-plastic properties decrease with increasing porosity. This is in contrast to analytical predictions, which underestimate the decrease in properties due to spherical pore assumptions. Moreover, the finite element-based simulations reveal a less pronounced influence of the sinter neck shape on the macroscopic behaviour, even though substantial differences in plastic strain localisation are discernible at the microscopic scale.

Place, publisher, year, edition, pages
Elsevier BV, 2024
Keywords
Fe–Mo alloys, Mechanical properties, Micromechanics, Microstructure, Powder metallurgy
National Category
Metallurgy and Metallic Materials
Identifiers
urn:nbn:se:kth:diva-344329 (URN)10.1016/j.msea.2024.146324 (DOI)001206570100001 ()2-s2.0-85186654408 (Scopus ID)
Note

QC 20240503

Available from: 2024-03-13 Created: 2024-03-13 Last updated: 2025-05-06Bibliographically approved
4. Micromechanical modeling of density-dependent fracture in porous sintered steel
Open this publication in new window or tab >>Micromechanical modeling of density-dependent fracture in porous sintered steel
Show others...
2025 (English)In: Article in journal (Other academic) Submitted
National Category
Applied Mechanics
Identifiers
urn:nbn:se:kth:diva-363172 (URN)
Note

QC 20250506

Available from: 2025-05-06 Created: 2025-05-06 Last updated: 2025-05-07Bibliographically approved

Open Access in DiVA

fulltext(1885 kB)66 downloads
File information
File name FULLTEXT01.pdfFile size 1885 kBChecksum SHA-512
abfd5f5d663be4af0a975a020970f277b6bedfd8b4a3bd09dd3c900305231b572c2b8086875cd6ee0dabd421ff7f352cb864ebadc0275a4bf3043c12f8f5e622
Type fulltextMimetype application/pdf

Authority records

Gaisina, Vladilena

Search in DiVA

By author/editor
Gaisina, Vladilena
By organisation
Engineering Mechanics
Solid and Structural Mechanics

Search outside of DiVA

GoogleGoogle Scholar
Total: 69 downloads
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

isbn
urn-nbn

Altmetric score

isbn
urn-nbn
Total: 1366 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf