Modeling the stress-strain response and microstructure development of porous sintered steels
2025 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]
The work in this thesis deals with developing a modeling framework for the prediction of stress-strain behavior and microstructural changes in sintered metals containing porosity. Sintered steels are used in certain structural applications, for example, in the automotive industry. Mechanical behavior then becomes of importance, where compact density plays a major role in controlling properties. In addition, microscale features related to the shape and size of the pores also affect the stress-strain response. These features are, in turn, influenced by the sintering cycle. Thus, a mean-field diffusion-based sinteringmodel is employed together with a representative volume element (RVE)micromechanical model in an attempt to predict experimentally measured properties of a bainitic sintered steel.
Paper A presents a detailed characterization of uniaxial tensile and compressive behavior, based on compact density. Micro and macro hardness testing is carried out and compared with tensile results. Tests on samples of the same green density, subjected to different hold times and temperatures during the sinter cycle, are also performed. Effects of carbon content, pore structure and density on tensile behavior are discussed.
The sintering model is described and presented in Paper B. A new computational framework is introduced for the “two-particle” model, incorporating five different transport mechanisms. Density-dependence is introduced by relating particle overlap to the solid volume in a close-packed structure. Predicted microscopic shrinkage is compared to experimentally measured dimensional change of sintered tensile specimens for two different sinter cycles. A parametric study investigates the influence of different transportIImechanisms and particle size. The quality of fit for the model and reasons for experimentally observed differences between two cycles are discussed.
Micromechanical modeling is addressed in Papers C and D. In Paper C, the RVE is introduced in the form of close-packed overlapping spherical particles. Detailed motivation is given for how the model relates to compact density,microstructural features of the pores and particle size. Matrix parameters are reported, obtained by fitting the experimental tensile curve at one density using small-strain theory and von Mises plasticity. Results are then presented for simulations at five densities, where good agreement is shown between simulated and experimental curves. Lastly, a parametric study investigating the effects of sinter neck curvature is presented.
In Paper D, the RVE is augmented with the introduction of cohesive zones between particles to account for fracture behavior. Cohesive parameters are identified for a bi-linear traction-separation law that give good qualitative agreement between experimental and model results. The effect of varying the number of cohesive zones on the fracture response is investigated. Discussion focuses on further improvements to the model based on in-situ microstructural observations found in literature. In the introduction and conclusion section of the thesis, the proposed framework is discussed in the context of the integrated computational materialsengineering (ICME) approach and state of the art in sintering and porosity modeling. Avenues for further development to improve the predictive ability or extend the utility of the model are suggested in the outlook.
Abstract [sv]
Denna avhandling behandlar utveckling av beräkningsmetoder för att förutsäga spännings-töjningsbeteende och mikrostrukturella förändringar i sintrade metaller som innehåller porer. Sintrade stål används i många strukturellatillämpningar, till exempel inom fordonsindustrin. Mekaniska egenskaper blir då av betydelse och densitet spelar en stor roll för att kontrollera dessa egenskaper. De mikroskaliga effekterna, så som storleken och formen på porerna påverkar även spänning-töjningsbeteendet. Dessa egenskaper påverkas i sin tur av sintringscykeln. Således används här en diffusionsmodell baserad på medelfältsteori tillsammans med en mikromekanisk modell med representativ volymelement (RVE) i ett försök att förutsäga experimentellt uppmätta egenskaper hos ett bainitiskt sintrat stål.
Artikel A presenterar en detaljerad karakterisering av enaxligt drag- och kompressionsbeteende, baserat på densitet. Mikro- och makrohårdhetstestning utförs och jämförs med dragprovsresultat. Tester på prover med samma densitet före sintring, utsatta för olika hålltider och temperaturer under sintringscykeln, genomförs också. Effekter av kolhalt, porstruktur och densitet på beteendet vid dragbelastning diskuteras.
Sintringsmodellen beskrivs och presenteras i Artikel B. En ny beräkningsmetod introduceras för "tvåpartikelmodellen", som innefattar fem olika transportmekanismer. Densitetsberoende introduceras genom att relatera partikelöverlappning till volymen i en tätpackad struktur. Simuleradmikroskopisk krympning jämförs med experimentellt uppmätt dimensionsförändring av sintrade dragprover för två olika sintringscykler. Därefter genomfördes en parametrisk studie av effekten av olikaIVtransportmekanismer och partikelstorlek. Noggrannheten hos de numeriska resultaten och orsakerna till experimentellt observerade skillnader mellan två cykler diskuteras också.
Mikromekanisk modellering tas upp i Artiklar C och D. I Artikel C introducerasen RVE-modell i form av tätt packade överlappande sfäriska partiklar. Endetaljerad motivering ges för hur modellen beskriver densitet ochmikrostrukturella egenskaper hos porerna och partikelstorlek. Konstitutivaparametrar beräknas genom att anpassa den experimentella dragprovkurvanvid en densitet med antagandet om små deformationer och von Mises plasticitet. Med den mikromekaniska modellen beräknades spänning-töjningskurvor vidfem olika densiteten och jämfördes med de experimentella resultaten. God överenstämmelse erhölls. Slutligen presenteras en parametrerstudie som undersökte effekterna av sinterhalsens krökning.
I Artikel D utökas RVE-modellen med införandet av kohesiva zoner mellanpartiklar för att beskriva sprickbeteendet mellan partiklar. Kohesiva parametrar identifieras för en bilinjär kohesiv modell som ger god kvalitativöverensstämmelse med experimentella resultat. Effekten av olika antalsammanhängande zoner undersöks. Därefter diskuteras framtida förbättringarav den kohesiva modellen baserat på observationer av mikrostrukturellsprickutveckling presenterat tidigare i andra studier.I avhandlingens introduktions- och slutsatsavsnitt diskuteras hur denframtagna beräkningsmetoden passar in i ICME-metoden och senaste rön inomsinter- och porositetsmodellering. I avsnittet om möjliga framtida studierföreslås möjligheter för att förbättra prediktionsförmågan och utökaanvändbarheten av modellen.
Place, publisher, year, edition, pages
Stockholm: KTH Royal Institute of Technology, 2025. , p. xii, 33
Series
TRITA-SCI-FOU ; 2025:19
Keywords [en]
Powder metallurgy, sintering model, micromechanics, RVE analysis, cohesive zone modeling
Keywords [sv]
Pulvermetallurgi, sintringsmodell, mikromekanik, RVE-analys, kohesiv zon modellering
National Category
Solid and Structural Mechanics
Research subject
Solid Mechanics
Identifiers
URN: urn:nbn:se:kth:diva-363171ISBN: 978-91-8106-245-8 (print)OAI: oai:DiVA.org:kth-363171DiVA, id: diva2:1956664
Public defence
2025-05-21, F3, Lindstedtsvägen 26, Stockholm, 13:00 (English)
Opponent
Supervisors
Note
QC250507
2025-05-072025-05-062025-05-07Bibliographically approved
List of papers