kth.sePublications
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Predictability, Prediction, and Control of Latency in 5G and Beyond: From Theoretical to Data-Driven Approaches
KTH, School of Electrical Engineering and Computer Science (EECS), Intelligent systems, Information Science and Engineering.ORCID iD: 0000-0001-9316-0414
2025 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

The explosive growth of mobile communication and the proliferation of real-time applications, such as industrial automation and extended reality (XR), have created unprecedented demands for ultra-reliable low-latency communication (URLLC) in wireless networks. For example, in industrial closed-loop control systems, data must be transmitted within a target delay of atmost a few milliseconds; violations can lead to costly failures and, there-fore, must occur with probabilities below 0.0001 (or, reliability above 0.9999).This dissertation addresses the critical challenge of end-to-end latency pre-diction and control in these dynamic and stochastic environments, bridging the gap between the inherent randomness of wireless communication and the deterministic performance guarantees required by time-sensitive applications.

In this thesis, we adopt a twofold approach, combining rigorous theoretical analysis with practical, data-driven methodologies. First, we introduce a framework for analyzing predictability that quantifies the inherent limits of latency forecasting in communication networks. Through analysis of Marko-vian systems, including single-hop and multi-hop queues, exact expressions and spectral-based upper bounds for predictability are derived, revealing the crucial influence of network topology, state transitions, and observation defects. Building on this foundation, we developed and implemented data-driventechniques for probabilistic delay prediction. A key contribution is a tail-optimized prediction method that integrates Extreme Value Theory (EVT) within a mixture density network framework, significantly enhancing the accuracy of predicting rare, high-latency events critical for URLLC. To demonstrate the practical utility of these predictions, ”Delta,” a novel active queue management scheme, is introduced. Delta integrates real-time delay violation probability predictions into packet-dropping decisions, dynamically adapting to delay variations and significantly reducing delay violations. To validate these approaches, the ExPECA testbed and EDAF framework were developed, enabling fine-grained delay measurement and decomposition in real 5G systems. Extensive experiments on both commercial off-the-shelf5G and software-defined radio-based Open Air Interface platforms confirmedthe superior accuracy and efficiency of the proposed EVT-enhanced models.

Furthermore, temporal prediction models, leveraging LSTM and Transformer architectures, were developed and shown to achieve higher accuracy comparedto the baseline approaches in real 5G network experiments, capturing the time-varying dynamics of wireless networks and providing accurate multi-step forecasts. This dissertation advances latency prediction and control for wireless networks, offering both theoretical foundations and practical solutions for time-sensitive applications. These findings have significant implications for designing and operating next-generation wireless networks, paving the way for more dependable communication. Future work should focus on integrating these prediction models to optimize the network and extending the framework to encompass broader quality of service metrics and emerging wireless technologies.  

Abstract [sv]

Den explosionsartade tillväxten av mobil kommunikation och spridningen av realtidsapplikationer, såsom industriell automation och utökad verklighet (XR), har skapat enastående krav på ultratillförlitlig kommunikation med låg fördröjning (URLLC) i trådlösa nätverk. Till exempel måste data i industriella slutna styrsystem ¨överföras inom en deadline på högst några millisekunder; ¨överträdelser kan leda till kostsamma fel och måste därför inträffa med sannolikheter under 0,0001 (eller, en tillförlitlighet över 0,9999). Denna avhandling behandlar den kritiska utmaningen att prediktera och kontrollera fördröjningen mellan sändare till mottagare i dessa dynamiska och stokastiska miljöer, och minskar skillnaden mellan den inneboende slumpmässigheten i trådlös kommunikation och de deterministiska prestandagarantier som krävs av tidskänsliga applikationer. I denna avhandling antas en tvådelad metod som kombinerar noggrann teoretisk analys med praktiska, datadrivna metoder. Först introduceras ett ramverk för att analysera förutsägbarhet som kvantifierar de inneboende gränserna för fördröjningsprognoser i kommunikationsnätverk. Genom att studera Markovsystem, däribland enkel- och multihoppköer, härleds exakta uttryck och spektrumbaserade övre gränser för förutsägbarhet, vilket belyser hur nätverkstopologi, tillståndsövergångar och observationsdefekter påverkar resultaten.

Utifrån denna grund utvecklades och implementerades datadrivna tekniker för probabilistisk fördröjningsprediktion. Ett viktigt bidrag är en metod för prediktion som integrerar extremvärdesteori (EVT) i ett ramverk för blandningstäthetsnätverk, vilket avsevärt förbättrar förmågan att prediktera sällsynta, höga fördröjningar som är avgörande för URLLC. För att demonstrera den praktiska nyttan av dessa prediktioner presenteras ”Delta,”ett nytt aktivt köhanteringssystem. Delta integrerar, i realtid, prediktioner av sannolikheten för fördröjningsöverträdelser i beslutsprocessen för paketborttagning, vilket minskar fördröjningsöverträdelser avsevärt.

För att validera dessa metoder utvecklades testbädden ExPECA och ramverket EDAF, som möjliggör högupplösta mätningar och uppdelning av fördröjningens komponenter i verkliga 5G-system. Omfattande experiment på både kommersiell 5G-utrustning och mjukvarudefinierade radioplattformar baserade på Open Air Interface bekräftade den förbättrade noggrannheten och effektiviteten hos de föreslagna EVT-förbättrade modellerna. Vidare utvecklades temporala prediktionsmodeller som använder LSTM- och Transformer-arkitekturer som visade högre träffsäkerhet än referensmetoder i verkliga 5G-nätverksexperiment, då de fångar de tidsvarierande dynamikerna i trådlösa nätverk och möjliggör exakta flerstegsprognoser.

Denna avhandling driver framåt forskningen om fördröjningsprediktion och -kontroll i trådlösa nätverk och erbjuder både teoretiska grunder och praktiska lösningar för tidskänsliga applikationer. Resultaten har stor betydelse för utformningen och driften av nästa generations trådlösa nätverk och banar väg för mer pålitlig kommunikation. Framtida arbete ska/borde/kan (will/should/can) fokusera på att integrera dessa prediktionsmodeller för att optimera nätverket, och utvidga ramverket till att omfatta bredare kvalitetsmätningar och nya trådlösa teknologier.

Place, publisher, year, edition, pages
Stockholm: KTH Royal Institute of Technology, 2025. , p. xii, 79
Series
TRITA-EECS-AVL ; 2025:54
National Category
Communication Systems
Research subject
Electrical Engineering
Identifiers
URN: urn:nbn:se:kth:diva-363256ISBN: 978-91-8106-285-4 (print)OAI: oai:DiVA.org:kth-363256DiVA, id: diva2:1957409
Public defence
2025-06-09, https://kth-se.zoom.us/s/68395855098, D3, Lindstedtvägen 9, Stockholm, 10:00 (English)
Opponent
Supervisors
Note

QC 20250509

Available from: 2025-05-09 Created: 2025-05-09 Last updated: 2025-05-12Bibliographically approved
List of papers
1. Data-Driven End-to-End Delay Violation Probability Prediction with Extreme Value Mixture Models
Open this publication in new window or tab >>Data-Driven End-to-End Delay Violation Probability Prediction with Extreme Value Mixture Models
2021 (English)In: 6th ACM/IEEE Symposium on Edge Computing, SEC 2021, Institute of Electrical and Electronics Engineers Inc. , 2021, p. 416-422Conference paper, Published paper (Refereed)
Abstract [en]

With the advent of edge computing, there is increasing interest in wireless latency-critical services. Such applications require the end-to-end delay of the network infrastructure (communication and computation) to be less than a target delay with a certain probability, e.g., 10(-2)-10(-5). To deal with this guarantee level, the first step is to predict the transient delay violation probability (DVP) of the packets traversing the network. The guarantee level puts a threshold on the tail of the end-to-end delay distribution; thus, it makes data-driven DVP prediction a challenging task. We propose to use the extreme value mixture model in the mixture density network (MDN) method for this task. We implemented it in a multi-hop queuing-theoretic system to predict the DVP of each packet from the network state variables. This work is a first step toward utilizing the DVP predictions, possibly in the resource allocation scheme or queuing discipline. Numerically, we show that our proposed approach outperforms state-of-the-art Gaussian mixture model-based predictors by orders of magnitude, in particular for scenarios with guarantee levels above 10(-2).

Place, publisher, year, edition, pages
Institute of Electrical and Electronics Engineers Inc., 2021
Keywords
edge computing, delay violation probability, time sensitive networks, extreme value mixture models
National Category
Computer Engineering
Identifiers
urn:nbn:se:kth:diva-315140 (URN)10.1145/3453142.3493506 (DOI)000800208500041 ()2-s2.0-85126257210 (Scopus ID)
Conference
6th ACM/IEEE Symposium on Edge Computing, SEC 2021, San Jose, CA, USA, 14-17 December 2021
Note

Part of proceedings: ISBN 978-1-4503-8390-5

QC 20220701

Available from: 2022-07-01 Created: 2022-07-01 Last updated: 2025-05-09Bibliographically approved
2. Data-Driven Latency Probability Prediction for Wireless Networks: Focusing on Tail Probabilities
Open this publication in new window or tab >>Data-Driven Latency Probability Prediction for Wireless Networks: Focusing on Tail Probabilities
2023 (English)In: GLOBECOM 2023 - 2023 IEEE Global Communications Conference, Institute of Electrical and Electronics Engineers (IEEE) , 2023, p. 4338-4344Conference paper, Published paper (Refereed)
Abstract [en]

With the emergence of new application areas, such as cyber-physical systems and human-in-the-loop applications, there is a need to guarantee a certain level of end-to-end network latency with extremely high reliability, e.g., 99.999%. While mechanisms specified under IEEE 802.1AS time-sensitive networking (TSN) can be used to achieve these requirements for switched Ethernet networks, implementing TSN mechanisms in wireless networks is challenging due to their stochastic nature. To conform the wireless link to a reliability level of 99.999%, the behavior of extremely rare outliers in the latency probability distribution, or the tail of the distribution, must be analyzed and controlled. This work proposes predicting the tail of the latency distribution using state-of-the-art data-driven approaches, such as mixture density networks (MDN) and extreme value mixture models, to estimate the likelihood of rare latencies conditioned on the network parameters, which can be used to make more informed decisions in wireless transmission. Actual latency measurements of a commercial private and a software-defined 5G network are used to benchmark the proposed approaches and evaluate their sensitivities concerning the tail probabilities. Our benchmarks highlight how the proposed methods, aided by noise regularization, achieve an acceptable accuracy in the extreme 99.9999% latency probabilities.

Place, publisher, year, edition, pages
Institute of Electrical and Electronics Engineers (IEEE), 2023
Keywords
extreme value theory, mixture density networks, time-sensitive networking, ultra-reliable low latency
National Category
Communication Systems
Identifiers
urn:nbn:se:kth:diva-344557 (URN)10.1109/GLOBECOM54140.2023.10437281 (DOI)001178562004149 ()2-s2.0-85187316554 (Scopus ID)
Conference
2023 IEEE Global Communications Conference, GLOBECOM 2023, Dec 4 2023 - Dec 8 2023, Kuala Lumpur, Malaysia
Note

Part of proceedings ISBN: 979-835031090-0

QC 20240322

Available from: 2024-03-20 Created: 2024-03-20 Last updated: 2025-05-09Bibliographically approved
3. Active Queue Management with Data-Driven Delay Violation Probability Predictors
Open this publication in new window or tab >>Active Queue Management with Data-Driven Delay Violation Probability Predictors
2023 (English)In: GLOBECOM 2023 - 2023 IEEE Global Communications Conference, Institute of Electrical and Electronics Engineers (IEEE) , 2023, p. 6371-6376Conference paper, Published paper (Refereed)
Abstract [en]

The increasing demand for latency-sensitive applications has necessitated the development of sophisticated algorithms that efficiently manage packets with end-to-end delay targets traversing the networked infrastructure. Network components must consider minimizing the packets' end-to-end delay violation probabilities (DVP) as a guiding principle throughout the transmission path to ensure timely deliveries. Active queue management (AQM) schemes are commonly used to mitigate congestion by dropping packets and controlling queuing delay. Today's established AQM schemes are threshold-driven, identifying congestion and trigger packet dropping using a predefined criteria which is unaware of packets' DVPs. In this work, we propose a novel framework, Delta, that combines end-to-end delay characterization with AQM for minimizing DVP. In a queuing theoretic environment, we show that such a policy is feasible by utilizing a data-driven approach to predict the queued packets' DVPs. That enables Delta AQM to effectively handle links with arbitrary stationary service time processes. The implementation is described in detail, and its performance is evaluated and compared with state of the art AQM algorithms. Our results show the Delta outperforms current AQM schemes substantially, in particular in scenarios where high reliability, i.e. high quantiles of the tail latency distribution, are of interest.

Place, publisher, year, edition, pages
Institute of Electrical and Electronics Engineers (IEEE), 2023
Keywords
active queue management, congestion control, delay violation probability, latency-sensitive applications
National Category
Telecommunications
Identifiers
urn:nbn:se:kth:diva-344559 (URN)10.1109/GLOBECOM54140.2023.10436903 (DOI)001178562006154 ()2-s2.0-85187319483 (Scopus ID)
Conference
2023 IEEE Global Communications Conference, GLOBECOM 2023, Dec 4 2023 - Dec 8 2023, Kuala Lumpur, Malaysia
Note

Part of ISBN: 979-835031090-0

QC 20240322

Available from: 2024-03-20 Created: 2024-03-20 Last updated: 2025-05-09Bibliographically approved
4. ExPECA: An Experimental Platform for Trustworthy Edge Computing Applications
Open this publication in new window or tab >>ExPECA: An Experimental Platform for Trustworthy Edge Computing Applications
Show others...
2023 (English)In: 2023 IEEE/ACM SYMPOSIUM ON EDGE COMPUTING, SEC 2023, Association for Computing Machinery (ACM), 2023, p. 294-299Conference paper, Published paper (Refereed)
Abstract [en]

This paper presents ExPECA, an edge computing and wireless communication research testbed designed to tackle two pressing challenges: comprehensive end-to-end experimentation and high levels of experimental reproducibility. Leveraging OpenStack-based Chameleon Infrastructure (CHI) framework for its proven flexibility and ease of operation, ExPECA is located in a unique, isolated underground facility, providing a highly controlled setting for wireless experiments. The testbed is engineered to facilitate integrated studies of both communication and computation, offering a diverse array of Software-Defined Radios (SDR) and Commercial Off-The-Shelf (COTS) wireless and wired links, as well as containerized computational environments. We exemplify the experimental possibilities of the testbed using OpenRTiST, a latency-sensitive, bandwidthintensive application, and analyze its performance. Lastly, we highlight an array of research domains and experimental setups that stand to gain from ExPECA's features, including closed-loop applications and time-sensitive networking.

Place, publisher, year, edition, pages
Association for Computing Machinery (ACM), 2023
Series
IEEE-ACM Symposium on Edge Computing, ISSN 2837-4819
Keywords
Edge computing experimental platform, reproducibility, end-to-end experimentation, wireless testbed
National Category
Computer Systems
Identifiers
urn:nbn:se:kth:diva-344956 (URN)10.1145/3583740.3626819 (DOI)001164050000036 ()2-s2.0-85182828620 (Scopus ID)
Conference
8th Annual IEEE/ACM Symposium on Edge Computing (SEC), DEC 06-09, 2023, Wilmington, DE
Note

QC 20240408

Part of ISBN 979-8-4007-0123-8

Available from: 2024-04-08 Created: 2024-04-08 Last updated: 2025-05-09Bibliographically approved
5. EDAF: An End-to-End Delay Analytics Framework for 5G-and-Beyond Networks
Open this publication in new window or tab >>EDAF: An End-to-End Delay Analytics Framework for 5G-and-Beyond Networks
2024 (English)Conference paper, Published paper (Refereed)
Abstract [en]

Supporting applications in emerging domains like cyber-physical systems and human-in-the-loop scenarios typically requires adherence to strict end-to-end delay guarantees. Contributions of many tandem processes unfolding layer by layer within the wireless network result in violations of delay constraints, thereby severely degrading application performance. Meeting the application's stringent requirements necessitates coordinated optimization of the end-to-end delay by fine-tuning all contributing processes. To achieve this task, we designed and implemented EDAF, a framework to decompose packets' end-to-end delays and determine each component's significance for 5G network. We showcase EDAF on OpenAirInterface 5G uplink, modified to report timestamps across the data plane. By applying the obtained insights, we optimized end-to-end uplink delay by eliminating segmentation and frame-alignment delays, decreasing average delay from 12ms to 4ms.

Place, publisher, year, edition, pages
Institute of Electrical and Electronics Engineers (IEEE), 2024
National Category
Communication Systems
Identifiers
urn:nbn:se:kth:diva-352157 (URN)10.1109/INFOCOMWKSHPS61880.2024.10620853 (DOI)001300418400140 ()2-s2.0-85196346420 (Scopus ID)
Conference
11th International Workshop on Computer and Networking Experimental Research using Testbeds (CNERT 2024)
Note

QC 20240823

Part of ISBN 979-8-3503-8447-5

Available from: 2024-08-22 Created: 2024-08-22 Last updated: 2025-05-09Bibliographically approved
6. Predictability of Performance in Communication Networks Under Markovian Dynamics
Open this publication in new window or tab >>Predictability of Performance in Communication Networks Under Markovian Dynamics
(English)Manuscript (preprint) (Other academic)
National Category
Electrical Engineering, Electronic Engineering, Information Engineering
Identifiers
urn:nbn:se:kth:diva-363263 (URN)
Note

QC 20250509

Available from: 2025-05-09 Created: 2025-05-09 Last updated: 2025-05-09Bibliographically approved
7. Probabilistic Delay Forecasting in 5G Using Recurrent and Attention-Based Architectures
Open this publication in new window or tab >>Probabilistic Delay Forecasting in 5G Using Recurrent and Attention-Based Architectures
(English)Manuscript (preprint) (Other academic)
Abstract [en]

With the emergence of new application areas such as cyber-physical systems and human-in-the-loop applications ensuring a specific level of end-to-end network latency with high reliability (e.g., 99.9%) is becoming increasingly critical. To align wireless links with these reliability requirements, it is essential to analyze and control network latency in terms of its full probability distribution. However, in a wireless link, the distribution may vary over time, making this task particularly challenging. We propose predicting the latency distribution using state-of-the-art data-driven techniques that leverage historical network information. Our approach tokenizes network state information and processes it using temporal deep-learning architectures-namely LSTM and Transformer models-to capture both short- and long-term delay dependencies. These models output parameters for a chosen parametric density via a mixture density network with Gaussian mixtures, yielding multi-step probabilistic forecasts of future delays. To validate our proposed approach, we implemented and tested these methods using a time-synchronized, SDR-based OpenAirInterface 5G testbed to collect and preprocess network-delay data. Our experiments show that the Transformer model achieves lower negative log-likelihood and mean absolute error than both LSTM and feed-forward baselines in challenging scenarios, while also providing insights into model complexity and training/inference overhead. This framework enables more informed decision-making for adaptive scheduling and resource allocation, paving the way toward enhanced QoS in evolving 5G and 6G networks.

National Category
Computer and Information Sciences
Identifiers
urn:nbn:se:kth:diva-363302 (URN)
Note

QC 20250512

Available from: 2025-05-12 Created: 2025-05-12 Last updated: 2025-05-12Bibliographically approved

Open Access in DiVA

Kappa(2780 kB)63 downloads
File information
File name FULLTEXT02.pdfFile size 2780 kBChecksum SHA-512
4affe57baedc6dd99b681876441ba302d78d49cecaaa5b2190372d7ce52d585d76b0a43d3fa349361e6d69af5c8cfdaf266a5c71b58413ae9c0953987ed9c0ef
Type fulltextMimetype application/pdf

Authority records

Mostafavi, Seyed Samie

Search in DiVA

By author/editor
Mostafavi, Seyed Samie
By organisation
Information Science and Engineering
Communication Systems

Search outside of DiVA

GoogleGoogle Scholar
Total: 63 downloads
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

isbn
urn-nbn

Altmetric score

isbn
urn-nbn
Total: 1831 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf