Predictability, Prediction, and Control of Latency in 5G and Beyond: From Theoretical to Data-Driven Approaches
2025 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]
The explosive growth of mobile communication and the proliferation of real-time applications, such as industrial automation and extended reality (XR), have created unprecedented demands for ultra-reliable low-latency communication (URLLC) in wireless networks. For example, in industrial closed-loop control systems, data must be transmitted within a target delay of atmost a few milliseconds; violations can lead to costly failures and, there-fore, must occur with probabilities below 0.0001 (or, reliability above 0.9999).This dissertation addresses the critical challenge of end-to-end latency pre-diction and control in these dynamic and stochastic environments, bridging the gap between the inherent randomness of wireless communication and the deterministic performance guarantees required by time-sensitive applications.
In this thesis, we adopt a twofold approach, combining rigorous theoretical analysis with practical, data-driven methodologies. First, we introduce a framework for analyzing predictability that quantifies the inherent limits of latency forecasting in communication networks. Through analysis of Marko-vian systems, including single-hop and multi-hop queues, exact expressions and spectral-based upper bounds for predictability are derived, revealing the crucial influence of network topology, state transitions, and observation defects. Building on this foundation, we developed and implemented data-driventechniques for probabilistic delay prediction. A key contribution is a tail-optimized prediction method that integrates Extreme Value Theory (EVT) within a mixture density network framework, significantly enhancing the accuracy of predicting rare, high-latency events critical for URLLC. To demonstrate the practical utility of these predictions, ”Delta,” a novel active queue management scheme, is introduced. Delta integrates real-time delay violation probability predictions into packet-dropping decisions, dynamically adapting to delay variations and significantly reducing delay violations. To validate these approaches, the ExPECA testbed and EDAF framework were developed, enabling fine-grained delay measurement and decomposition in real 5G systems. Extensive experiments on both commercial off-the-shelf5G and software-defined radio-based Open Air Interface platforms confirmedthe superior accuracy and efficiency of the proposed EVT-enhanced models.
Furthermore, temporal prediction models, leveraging LSTM and Transformer architectures, were developed and shown to achieve higher accuracy comparedto the baseline approaches in real 5G network experiments, capturing the time-varying dynamics of wireless networks and providing accurate multi-step forecasts. This dissertation advances latency prediction and control for wireless networks, offering both theoretical foundations and practical solutions for time-sensitive applications. These findings have significant implications for designing and operating next-generation wireless networks, paving the way for more dependable communication. Future work should focus on integrating these prediction models to optimize the network and extending the framework to encompass broader quality of service metrics and emerging wireless technologies.
Abstract [sv]
Den explosionsartade tillväxten av mobil kommunikation och spridningen av realtidsapplikationer, såsom industriell automation och utökad verklighet (XR), har skapat enastående krav på ultratillförlitlig kommunikation med låg fördröjning (URLLC) i trådlösa nätverk. Till exempel måste data i industriella slutna styrsystem ¨överföras inom en deadline på högst några millisekunder; ¨överträdelser kan leda till kostsamma fel och måste därför inträffa med sannolikheter under 0,0001 (eller, en tillförlitlighet över 0,9999). Denna avhandling behandlar den kritiska utmaningen att prediktera och kontrollera fördröjningen mellan sändare till mottagare i dessa dynamiska och stokastiska miljöer, och minskar skillnaden mellan den inneboende slumpmässigheten i trådlös kommunikation och de deterministiska prestandagarantier som krävs av tidskänsliga applikationer. I denna avhandling antas en tvådelad metod som kombinerar noggrann teoretisk analys med praktiska, datadrivna metoder. Först introduceras ett ramverk för att analysera förutsägbarhet som kvantifierar de inneboende gränserna för fördröjningsprognoser i kommunikationsnätverk. Genom att studera Markovsystem, däribland enkel- och multihoppköer, härleds exakta uttryck och spektrumbaserade övre gränser för förutsägbarhet, vilket belyser hur nätverkstopologi, tillståndsövergångar och observationsdefekter påverkar resultaten.
Utifrån denna grund utvecklades och implementerades datadrivna tekniker för probabilistisk fördröjningsprediktion. Ett viktigt bidrag är en metod för prediktion som integrerar extremvärdesteori (EVT) i ett ramverk för blandningstäthetsnätverk, vilket avsevärt förbättrar förmågan att prediktera sällsynta, höga fördröjningar som är avgörande för URLLC. För att demonstrera den praktiska nyttan av dessa prediktioner presenteras ”Delta,”ett nytt aktivt köhanteringssystem. Delta integrerar, i realtid, prediktioner av sannolikheten för fördröjningsöverträdelser i beslutsprocessen för paketborttagning, vilket minskar fördröjningsöverträdelser avsevärt.
För att validera dessa metoder utvecklades testbädden ExPECA och ramverket EDAF, som möjliggör högupplösta mätningar och uppdelning av fördröjningens komponenter i verkliga 5G-system. Omfattande experiment på både kommersiell 5G-utrustning och mjukvarudefinierade radioplattformar baserade på Open Air Interface bekräftade den förbättrade noggrannheten och effektiviteten hos de föreslagna EVT-förbättrade modellerna. Vidare utvecklades temporala prediktionsmodeller som använder LSTM- och Transformer-arkitekturer som visade högre träffsäkerhet än referensmetoder i verkliga 5G-nätverksexperiment, då de fångar de tidsvarierande dynamikerna i trådlösa nätverk och möjliggör exakta flerstegsprognoser.
Denna avhandling driver framåt forskningen om fördröjningsprediktion och -kontroll i trådlösa nätverk och erbjuder både teoretiska grunder och praktiska lösningar för tidskänsliga applikationer. Resultaten har stor betydelse för utformningen och driften av nästa generations trådlösa nätverk och banar väg för mer pålitlig kommunikation. Framtida arbete ska/borde/kan (will/should/can) fokusera på att integrera dessa prediktionsmodeller för att optimera nätverket, och utvidga ramverket till att omfatta bredare kvalitetsmätningar och nya trådlösa teknologier.
Place, publisher, year, edition, pages
Stockholm: KTH Royal Institute of Technology, 2025. , p. xii, 79
Series
TRITA-EECS-AVL ; 2025:54
National Category
Communication Systems
Research subject
Electrical Engineering
Identifiers
URN: urn:nbn:se:kth:diva-363256ISBN: 978-91-8106-285-4 (print)OAI: oai:DiVA.org:kth-363256DiVA, id: diva2:1957409
Public defence
2025-06-09, https://kth-se.zoom.us/s/68395855098, D3, Lindstedtvägen 9, Stockholm, 10:00 (English)
Opponent
Supervisors
Note
QC 20250509
2025-05-092025-05-092025-05-12Bibliographically approved
List of papers